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Abstract  

Predicting soil organic matter (SOM) using advanced tools such as Sentinel-2 satellite 
imagery and geostatistical methods could help in achieving the Sustainable Development 
Goals related to food security and climate change. The spectral capabilities of Sentinel-2 allow 
for the characterization of soil properties from the reflectance patterns of soil, thereby allowing 
for indirect SOM estimation. This is imperative for countries, such as South Africa, which have 
low SOM levels and therefore limited SOM data. Okhahlamba Local Municipality in uThukela 
District Municipality, KwaZulu-Natal Province of South Africa, was chosen as a testing site in 
this study. Here, we used stratified random sampling; 52 samples were selected − 13 in each 
of the main land-use classes (agricultural, residential, rangeland and eroded) in the municipal 
area. Sentinel-2 data were used in conjunction with the geostatistical methods, Ordinary 
Kriging (OK) and Simple Kriging (SK), and the hybrid geostatistical methods, Regression 
Ordinary Kriging (ROK) and Regression Simple Kriging (RSK), to predict SOM. The 
performance of the hybrid methods proved to be superior to that of the ordinary methods. 
Specifically, ROK and RSK, using spectral bands, presented with the highest levels of accuracy 
(R2: 0.63 for both) and the lowest proportion of errors (ME: 0.53%; 0.54%) and (RMSE: 
0.68%; 0.67%), respectively. The ROK andR SK outputs emanating from further methods using 
principal components (R2: 0.30; 0.26), (ME: 0.70%; 0.71%) and (RMSE: 0.82%;0.85%). OK 
and SK showed the lowest levels of accuracy (R2: 0.07; 0.04) and the largest proportion of 
errors (ME: 0.79%; 0.83%) and (RMSE: 0.93%; 0.98%). Auxiliary information served to boost 
the predictive performance of these models. Overall, ROK and RSK, using spectral bands, 
accounted for 63% of the predicted SOM variability. SOM plays a crucial role in soils and 
should be sustainably managed in order to improve food security for the current and future 
generations. The combined use of Sentinel-2 data and geostatistical methods has great 
potential for predicting SOM and thereby in achieving the sustainable development agenda. 
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1. Introduction  

Soil organic matter (SOM), which is composed of soil biota and biological residues at all 
levels of decay (Craswell and Lefroy, 2001), is the key indicator of soil health and has major 
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impacts on land-based resources. According to Juma (1999),  such decay produces organic 
carbon and nutrients, crucial components of SOM: in fact, they become a source of energy for 
soil microorganisms in that they break down organic material into forms that plants can easily 
absorb. From an agricultural perspective, SOM serves as a complex reservoir of carbon, 
nutrients, and microorganisms that promotes soil fertility and improves overall soil health and 
function (Amulothu et al., 2023). These benefits improve food production and security 
(Gattinger et al., 2011) and, as reflected in a growing number of studies (Lorenz and Lal, 2018; 
Smith et al., 2018; Lal, 2020a), ensure that SOM is an essential component in promoting the 
United Nations' Sustainable Development Goals (SDGs). However, such advantages require a 
series of stra  tegies to improve the understanding of SOM and of the robust and consistent 
methods to qualify it. 

Beyond the appropriate effects of SOM on agricultural activities, its importance also 
includes its role in mitigating climate change. This fact was strengthened at the COP21 
conference in 2015, where the "Four per 1000 Soils for Food Security and Climate" programme 
was introduced. This programme recognizes that soils have a critical role to play in mitigating 
greenhouse gas (GHG) emissions caused by human activity, in ensuring food security (Lal, 
2020a).  While the intention of this initiative is contentious (King et al., 2018; Aubert et al., 
2020), numerous efforts related to the elements linked to it are ongoing in several parts of the 
world (Smith et al., 2018). To promote the “Four per 1000 Soils” initiative, the evaluation and 
estimation of SOM is key to  understanding the effects of land and soil management (Lal, 
2020b). This is a challenging task because SOM content varies greatly from local to global 
landscapes (Pouladi et al., 2023), and  innovative digital soil mapping methods have 
revolutionized the spatial quantification and prediction of SOM (McBratney, Santos and 
Minasny, 2003).  

SOM is likely to result in changes to the biophysiological properties of soil that affect their 
spectral reflectance (Li et al., 2024), thereby making remote sensing a suitable tool to 
objectively quantify SOM conditions (Gallo et al., 2018a). In particular, the several bands and 
their combinations in the visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) 
spectral bands are closely related to the organic and inorganic composition of the soil (Ben-
Dor, Irons and Epema, 1999; Krishan et al., 2014) and provide a theoretical basis for SOM 
investigations (Shepherd and Walsh, 2007). For example, Viscarra Rossel et al. (2006) showed 
good correlations of the SOM along the respective wavelengths, 410 nm, 570 nm, and 660 nm 
of the VIS region. Liu, Zhang and Zhang (2009) found that reflectance in the range of 620 nm 
to 810 nm is related to the SOM and that the highest correlation coefficient is at 710 nm. Also, 
Zheng et al. (2016) showed that the wavelength range, 500–700 nm, presented with the highest 
correlation with SOM, while Meng et al. (2020) found that the wavelength 700–800 nm is most 
useful for SOM prediction. The retrieval of SOM from these regions has played a major role 
in characterizing the spatial and temporal status of soil information dynamics, ranging from the 



South African Journal of Geomatics, Vol. 14. No. 2, July 2025 
 

228 
 

local to larger areas (Gallo et al., 2018b). This has revolutionized the long-standing challenge 
of SOM quantification using spatially- and cost-constrained field campaigns (Wang et al., 
2017), as newer remote sensing products such as Sentinel-2 offer better opportunities to 
estimate SOM using rapid, cost-free, spectrally rich and spatially continuous data (Zhang et 
al., 2021). These features enable the detection of fine-scale SOM variations which is crucial 
for SOM prediction in various landscapes (Li et al., 2021). 

Numerous studies have integrated various remotely sensed products with different  spatial 
modelling strategies to improve the reliability of SOM prediction. For example, Chang et al. 
(2024) successfully predicted SOM in croplands when using machine-learning algorithms. 
Wang et al. (2024) combined PlanetScope and Sentinel-2 for SOM prediction and achieved 
satisfactory results. Sentinel-2 data have appeared as the most popular product in SOM research 
recently in that, with the integration of geostatistical techniques, they employ a definite 
framework of spatial autocorrelation, and in so doing, produce an estimate of a variable at each 
point (McBratney, Santos and Minasny, 2003). Conversely, deterministic systems (e.g., 
splines) tend to generalize reality in that they fail to account for the spatial autocorrelation of 
samples, including the estimation of errors (Robinson and Metternicht, 2006). Therefore, 
lately, geostatistical methods, particularly the hybrid varieties, have become a preferred choice 
owing to their success in SOM prediction (Piccini, Marchetti and Francaviglia, 2014). For 
example, Yao et al. (2013) showed that regression kriging (RK) outperformed ordinary kriging 
(OK) and inverse distance weighting (IDW) in their study of SOM in a small-scale 
heterogeneous terrain. Bhunia, Shit, and Maiti (2018) successfully compared different 
deterministic and geostatistical methods for mapping soil organic content and found OK to be 
the best method. Bangroo et al. (2020) predicted soil organic content using RK and OK and 
achieved greater accuracy in their results when they used RK. Because of their theoretical 
applicability in this study and their superior performance in prior works, the geostatistical 
techniques, OK, SK, and the hybrid geostatistical methods, ROK and RSK were taken into 
consideration. 

According to du Preez, van Huyssteen and Mnkeni (2011), South Africa is typically poor in 
organic soils, with much of them − owing to their relatively wide extent − concentrated in the 
country’s grasslands and savanna biomes, while on the other hand, the relatively small forest 
biome contains more organic soils per square metre (Schütte, Schulze and Paterson, 2019). 
Geographically, organic soils occur mainly at higher altitudes in the central-southern parts of 
KwaZulu-Natal, in the north-eastern part of the Eastern Cape, and in the southern parts of the 
Western Cape Province, with isolated patches in another places (Schütte, Schulze and Paterson, 
2019). In this study, we predicted the proportion of SOM in the soils of the central western part 
of KwaZulu-Natal, South Africa, by using the geostatistical methods, Ordinary Kriging (OK) 
and Simple Kriging (SK), and the hybrid geostatistical methods, Regression Ordinary Kriging 
(ROK) and Regression Simple Kriging (RSK), based on Sentinel-2 data.  
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2. Materials and Methods 

2.1.  Study area 

The Emakhosaneni area (latitude 28° 46' 45.1"S; longitude 29° 14' 42.4"E), located 17 km 
southwest of Bergville in the central section of the Okhahlamba Local Municipality in Kwa-
Zulu-Natal province, was the site selected for the SOM prediction (Fig. 1). At the base of the 
Drakensberg range, the region is situated at an altitude of 1,150 metres and shares its 
boundaries with the province of the Free State and the Kingdom of Lesotho (Sewpersad et al., 
2024). With 650–1200 mm of annual precipitation, the majority of which falls between October 
and March, this area has a significantly seasonal rainfall pattern and is extremely humid 
(Schulze, 1997). Typically, the lowest temperature is 12°C, while  the highest  is 28°C 
(Schulze, 1997).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geographic location of the research site and the soil samples collected across the 
mainland-use categories. 

 

The region is swept by strong winds, predominantly in the winter and spring periods. 
Numerous water sources are found in the area, with the main ones being the Tugela River and 
the Driel Dam to the east, and the Woodstock Dam to the north. The primary geology of the 
region is composed of Beaufort Group rock types that are Triassic and Permian in age (Verster, 
1998). Occupying 13.72km2, the region accommodated 1,938 residents overall, and had an 
average population density of 141.30 persons per km2 in 2011 (Statistics South Africa (SSA), 
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2011) − which is now anticipated to be somewhat higher. More than 90% of the population is 
black African, and under traditional leadership, with the people preserving a vibrant Zulu 
culture. This region is devoted mainly to large- and small-scale agriculture, with livestock 
grazing the grasslands. 

2.2.  Soil sample collection  

We collected soil samples on 16 July 2019, on the same date that the satellite imagery 
employed in this work was acquired. After a field campaign, we identified four main classes 
of land in the area: agricultural, residential, rangeland, and eroded. We then applied a stratified 
random sampling method, where 13 samples from each class were selected individually to 
make up 52 samples, the distribution of which is shown in Fig. 1. Using an auger, we collected 
samples from the surface to a depth of 15 cm1 and in cases where this tool could not penetrate, 
we used a spade. We then placed the respective samples in labelled, airtight plastic bags to 
prevent any spillage or drying out and stored them in a cool,dry cooler box, away from direct 
exposure to sunlight. All 52 samples were stored in the laboratory for analysis. The GPS points 
for the samples were recorded in MS Excel and a complete data file was exported in .csv format 
for descriptive and geostatistical analysis. 

2.3.  Sentinel-2 spectral data   

We used cloud-free Sentinel-2 satellite imagery taken on 16 July 2019. The preference was 
given to Sentinel-2 over other possible satellite products such as PlanetScope and SPOT. This 
was due to its rich spectral properties (13 bands), which are commonly used in SOM research 
(Castaldi et al., 2019). Sentinel-2 satellite imagery collects multispectral data at 10 to 60 m 
spatial resolutions across these bands (Drusch et al., 2012). These data were obtained at Level 
2A (in the lower layers of the atmosphere), with geometric, radiometric, and atmospheric 
correction, which together make the data suitable for analysis (Žížala, Minařík and Zádorová, 
2019). The product  was further processed by means of the Sentinel Application Platform 
(SNAP) programme (ESA, 2020)2. Subsequently, all selected bands were resampled to 10 m 
using a nearest neighbour algorithm to ensure that all bands had a similar resolution scale. This 
method is computationally efficient and is known to preserve the input pixel values of the 
image (Roy et al., 2016; Gholizadeh et al., 2018). We used nine of the thirteen bands, namely 
B2 (Blue), B3 (Green), B4 (Red), B5 (Red edge1), B6 (Red edge2), B7 (Red edge3), B8 (NIR), 
B11 (SWIR1) and B12 (SWIR2), all of which are commonly used to characterise soils 
(Gholizadeh et al., 2018; Castaldi et al., 2019).  

 
1 This is the commonly used depth of the soil in SOM studies because it represents the top 

layer, which is often the layer compared with the remotely sensed data in question. 
2 The Sentinel-2 user manual (ESA, 2015) provides an overview of the process. 
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2.4.  Principal component analysis (PCA) 

We used the PCA method, a widely applied multivariate statistical method in SOM research 
(Guo et al., 2018) because it has a strong impact on predicting soil characteristics (Hengl, 
Heuvelink and Rossiter, 2007). In general, PCA minimizes the dimensionality of the dataset 
and avoids multicollinearity without losing any information from the original data. As such, 
the resultant  PCs explain most of the information from the dataset (Sharma, Chauhan and 
Kumar, 2021). We implemented PCA by applying factor analysis in the Statistical Package for 
the Social Sciences (SPSS; version 26), where the computed spectral indices served as the input 
variables. Kaiser's criterion was applied to identify the dominant PCs with eigenvalues over 
one (1), which were then rotated, using varimax rotation, to maximize the correlations between 
the PCs and the variables (Askari et al., 2020). Owing to the moderate nature of the 
multicollinearity and the fact that it fell within the brink (i.e., <10), we followed Samuels 
(2017) and implemented PCA only for selected spectral indices. Although PCA has been 
successfully used in soil quality research, there have been cases where it has fallen short in 
selecting indicators that would reflect the differences between soil conditions in different land 
systems (Nehrani et al., 2020). 

2.5.  Multiple linear regression (MLR) 

We developed MLR models to predict SOM content using multivariate analysis techniques. 
According to Liu et al. (2015), MLR assumes that the independent and dependent variables are 
linearly related. Additionally, this method aims to quantify the total influence of independent 
factors on a particular dependent variable (Kumar et al., 2018). Here, the response variable was 
SOM, with predictor variables consisting of PCs obtained from the spectral bands. Two distinct 
MLR models were constructed - one with nine spectral bands as predictor variables and SOM 
as the dependent variable. Significant descriptive statistics and residuals (differences between 
expected and observed SOM values) were analysed. In the second model, the PCA scores 
served as the predictor variables and SOM as the response variable. Predicted values and 
residuals from both models were stored for further examination.  

MRL is computed in Equation 1. 

 

𝑌𝑌 =  𝑏𝑏0  + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋3  … … … … … … + 𝑏𝑏𝑝𝑝𝑋𝑋𝑝𝑝  [1] 

 

Here, 𝑋𝑋 denotes the dependent variable; 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3……… 𝑋𝑋𝑝𝑝 denote the independent 
variables; and 𝑏𝑏0 represents the value of 𝑌𝑌 when all of the independent variables (𝑋𝑋1–𝑋𝑋𝑝𝑝) are 
equal to zero (i.e., the constant), and 𝑏𝑏1 through 𝑏𝑏𝑝𝑝 are the predicted regression coefficients. 
The individual regression coefficient represents the variation in 𝑌𝑌 relative to a one-unit change 
in the corresponding independent variable. 
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2.6.  Geostatistical analysis  

In this study, we used different geostatistical methods to predict SOM content in an ArcGIS 
(version 10.2) environment. This included Ordinary Kriging (OK) and Simple Kriging (SK) as 
commonly applied methods for this purpose. OK is capable of proving unbiased predictions 
with the least errors (Gia Pham et al., 2019), while SK is relatively similar to OK except that 
it integrates a mean value in the prediction of values at unknown locations (Webster and Oliver, 
2007).  

OK (Equation 2) and SK (Equation 3) are calculated as: 

𝑍𝑍(𝑋𝑋0) = �λ𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑍𝑍(𝑋𝑋𝑖𝑖)  [2] 

𝑍𝑍(𝑋𝑋0) = �λ𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(𝑍𝑍(𝑋𝑋𝑖𝑖) −𝑚𝑚(𝜇𝜇𝑖𝑖)) [3] 

Here, 𝑍𝑍(𝑋𝑋0) signifies the predicted value at the unmeasured site 𝑋𝑋0; 𝑍𝑍(𝑋𝑋𝑖𝑖) represents the 
observed value at site (𝑋𝑋𝑖𝑖); 𝜆𝜆𝜆𝜆 is the weighting coefficient from the observed site to 𝑋𝑋0; 𝑚𝑚(𝜇𝜇𝑖𝑖) 
is the recognized stationary mean of 𝑍𝑍(𝑋𝑋𝑖𝑖); and 𝑁𝑁 represents the number of sites within the 
nearest neighbourhood searching process. 

Beyond the above-mentioned methods, an attempt was made to incorporate a regression 
model with residuals to produce variants such as regression kriging (RK). Thus,  RK integrates 
the strength of both the regression and kriging analyses to elevate the accuracy of geospatial 
predictions (Hengl, Heuvelink and Stein, 2004). Essentially, this is valuable for neighbouring 
datasets with comparable values, a process known as spatial autocorrelation (Suleymanov et 
al., 2024). According to Kumar et al. (2018), RK entails the following steps: (a) Use an MLR 
to identify a trend between the response variable (SOM) and auxiliary variables (predictors; 
spectral bands, and PCs); and (b) Use regression techniques to reach a local mean and to 
estimate the associated residuals using a variogram and kriging, and subsequently add them all 
together. RK divides the prediction into two portions, as shown in Equation 4. The equation on 
the right-hand side is first represented by regression and the second part by kriging the residual. 

𝑍𝑍(𝑋𝑋0) = 𝑚𝑚�(𝑋𝑋0) + 𝑒̂𝑒(𝑋𝑋0) = �𝛽𝛽𝑘𝑘.�
𝑝𝑝

𝑘𝑘=0

𝑞𝑞𝑘𝑘(𝑋𝑋0) + �λ𝑖𝑖

𝑁𝑁

𝑖𝑖=1

. 𝑒𝑒(𝑋𝑋𝑖𝑖) [4] 

  

Here, 𝑚𝑚�(𝑋𝑋0) represents the fitted deterministic portion; 𝑒̂𝑒(𝑋𝑋0) is the interpolated residual; 
𝛽𝛽𝑘𝑘� is the predicted deterministic model coefficient; 𝑞𝑞𝑘𝑘(𝑋𝑋0) is the kth predictor at site 𝑋𝑋0; 𝑝𝑝 is 
the number of predictors; λ𝑖𝑖 is the kriging weight resulting from the geographic dependence 
pattern of the residual; and 𝑒𝑒(𝑋𝑋𝑖𝑖) is the residual at site 𝑋𝑋𝑖𝑖. 
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In this study, we performed both OK and SK methods, on the residuals obtained from the 
MLR model of the spectral bands by using the training dataset. After the residuals were 
interpolated, the projected values of the MLR models were added to them. Regression Ordinary 
Kriging (ROK) and Regression Simple Kriging (RSK) were the outcomes of this. Likewise, 
for the spectral indices model, the afore-mentioned process was carried out. 

 

𝛾𝛾(ℎ) = �𝐶𝐶0 +
0
𝐶𝐶
𝐶𝐶0
�
3ℎ
2ℎ

−
ℎ3

𝑎𝑎3
�  

ℎ = 0
    0 < ℎ ≤ 𝑎𝑎

ℎ > 𝑎𝑎
 � [5] 

 

Here, 𝛾𝛾(ℎ) represents the variogram; 𝑎𝑎 represents the range of soil samples; ℎ represents the 
spatial lag; 𝐶𝐶0 is the nugget; and 𝐶𝐶0+𝐶𝐶 is the partial sill. We used a semivariogram for the 
prediction process. 

2.7.  Validation  

Before building the prediction models, we first split the dataset into training data (80%) and 
validation data (20%). According to Stevens and Ramirez-Lopez (2014), using independent 
training and validation samples makes it easier to compare SOM results between different 
models. We also tested the accuracy of the prediction methods (OK, SK, ROK, and RSK) for 
SOM prediction. We then validated the accuracy of each model by using the determination 
coefficient (R2; Eq. 6), the mean error (ME; Eq. 7), and the root mean square error (RMSE; Eq. 
8). In general, the model with the greatest R2 and the least ME and RMSE values proved to be 
the most accurate.  

Equations (6)–(8) are calculated as: 

  

𝑅𝑅2 = (
𝑛𝑛(∑𝑥𝑥𝑥𝑥) − (∑𝑥𝑥)(∑𝑦𝑦)

�𝑛𝑛(∑𝑥𝑥2) − (∑𝑥𝑥)2 �𝑛𝑛(∑𝑦𝑦2) − (∑𝑦𝑦)2
)2        

[6] 

𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
�(𝑧𝑧(𝑥𝑥𝑖𝑖) − 𝑧𝑧∗(𝑥𝑥𝑖𝑖))
𝑁𝑁

𝑖𝑖−1

        

[7] 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝑧𝑧(𝑥𝑥𝑖𝑖) − 𝑧𝑧∗(𝑥𝑥𝑖𝑖))2
𝑁𝑁

𝑖𝑖−1

  
  

[8] 

  

Here, 𝑥𝑥𝑖𝑖 represents the predicted SOM at site 𝑖𝑖; 𝑦𝑦𝑖𝑖 denotes the measured SOM at site 𝑖𝑖; 𝑛𝑛 
represents the number of samples; 𝑧𝑧 ∗ (𝑥𝑥𝑖𝑖) is the predicted value; and 𝑧𝑧(𝑥𝑥𝑖𝑖)2 is the measured 
value. 
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3. Results  

3.1.  Evaluating SOM predictions with geostatistical techniques 

A summary of the variables used to simulate the residuals of the two MLR models and the 
semivariograms for the SOM content are outlined in Table 1. As opposed to the residuals of 
the two distinct MLR models, the measured SOM content presented with greater values over 
the range of the semivariograms. More precisely, the lowest range (648 m) was achieved by 
ROK by using the residuals of the spectral band, while the maximum range (868.45 m) was 
covered by the semivariogram for SK which used the SOM content. The nugget ranged from 
0.390 to 1.013, partial sill from 0.365 to 0.736, and sill 0.885 to 1.446. Furthermore, the nugget-
to-sill ratio, within the remaining ratios in the region between 0.458 and 0.511, was greatest 
for the SOM content evaluated via OK (0.735) and smaller for SK (0.406). 

 
Table 1. Semivariogram model variables for residuals of the MLR models obtained from PCs 

and spectral bands, individually, and SOM content 
Data type Method Range (m) Nugget (𝑪𝑪𝟎𝟎) Partial sill (𝑪𝑪) Sill (𝑪𝑪𝑪𝑪 + 𝑪𝑪) 𝑪𝑪𝟎𝟎/Sill 
Measured SOM OK 723.21 1.013 0.365 1.378 0.735 
Measured SOM SK 868.45 0.390 0.570 0.960 0.406 
Residuals of spectral bands1 ROK 648.00 0.452 0.433 0.885 0.511 
Residuals of spectral bands1 RSK 785.29 0.570 0.604 1.174 0.486 
Residuals of PCs1 ROK 690.87 0.710 0.736 1.446 0.491 
Residuals of PCs1 RSK 814.57 0.511 0.604 1.115 0.458 

1Obtained from the MLR model 

The scatterplots comparing the predicted SOM values from the different geostatistical 
models with the observed SOM for the training and validation datasets are shown in Fig. 2. 
Figs 2(a) and (b) show a roughly continuous trend because the lines of best fit have a horizontal 
pattern. Except for a few cases, the plotted points are dispersed randomly in both scenarios and 
are very near to their corresponding best-fit lines. The plots of the training and validation 
datasets, however, clearly show a linear trend in Figs 2(c) and (d) since the best-fit lines are 
virtually at a 45° angle, with just a small number of points deviating from it. As a result, it is 
clear that the plotted points are closer to their individual lines of best fit and thus more compact. 
Additionally, a linear trend was shown for the training and validation datasets in Figs 2(e) and 
(f). But more plots were straying from the optimal fit lines. As a result, the data points were 
more dispersed along their respective lines, and therefore less compact.  
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Fig. 2. The observed and predicted SOM content using geostatistical techniques (a) OK, (b) 
SK; hybrid geostatistical techniques of spectral band (c) ROK, (d) RSK and of PCs (e) ROK 

and (f) RSK. 
 

Table 2 presents a summary of the model performance for each interpolation method used 
to predict SOM content. The hybrid methods using spectral bands achieved the highest 
accuracy (R2 = 0.63 for both ROK and RSK) with relatively the smallest ME (ROK = 0.53%; 
RSK = 0.54%) and RMSE (ROK = 0.68%; RSK = 0.67%). It is clear from the ME values that 
the ROK for the spectral bands had the lowest total ME value (0.53%) and that the RSK had 
the highest value (0.83%). This was followed by the hybrid methods using PCs, where ROK 
and RSK, respectively, achieved R2 values of 0.30 and 0.26. Their error values, respectively, 
were ME (0.70% and 0.71%) and RMSE (0.82% and 0.85%). Ordinary geostatistical methods 
applied to the least performed models presented with OK (R2 = 0.07) and SK (R2 = 0.04) values, 
with the highest ME (0.79% and 0.83%) and RMSE (0.93% and 0.98%) values, respectively. 
Otherwise, all RMSE values appeared to be higher than the ME values. 

 
Table 2. Summary of different interpolation methods based on the validation dataset 

Interpolation method R2 ME (%) RMSE (%) 
OK 0.07 0.79 0.93 
SK 0.04 0.83 0.98 
ROK of spectral bands 0.63 0.53 0.68 
RSK of spectral bands 0.63 0.54 0.67 
ROK of PCs 0.30 0.70 0.82 
RSK of PCs 0.26 0.71 0.85 
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3.2.  Geospatial prediction of SOM patterns  

The maps in Fig. 3 (a–f) show SOM predictions determined from various geostatistical 
methods and their variants. Broadly speaking, these maps show similar configurations, with 
different intensities of SOM content. Except for the central east, the SOM content is obviously 
larger in the western section of the study area that is dominated by agricultural activities. Noted 
also, is a remarkably clear declining pattern of SOM content from the central to the southeastern 
parts of the study area. Otherwise, a patchy distribution of SOM is visible in other parts of this 
test site.   

 

 
Fig. 3. Geospatial pattern of the predicted SOM content based on geostatistical methods (a) 
OK and  (b) SK; geostatistical varieties with spectral bands (c) ROK, (d) RSK, with PCs (e) 

ROK and (f) RSK. 

 
4. Discussion  

This research was intended to predict the SOM content using various geostatistical methods 
and their variants. Of the six interpolation techniques used, the ROK and RSK using spectral 
bands presented with the highest R2 values (0.63 each), predicting 63% of the SOM content. 
These results are consistent with existing works (Zhang et al., 2012; Mirzaee et al., 2016a; 
Song et al., 2017), where RK hybrid geostatistical methods more effectively predicted SOM  
than ordinary geostatistical methods. This is due to the fact that the hybrid methods are able to 
incorporate additional information (Hengl, Heuvelink and Stein, 2004). Remote sensing data 
have been shown to serve as a crucial auxiliary variable to improve estimates of SOM content 
and its geographic variability (Mirzaee et al., 2016b). The ROK and RSK plots showed a 
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relatively consistent pattern in that they indicated a strong positive linear relationship between 
measured and predicted SOM content using spectral data. However, the same hybrid methods 
using PCs showed virtually similar results to the those derived from spectral data, but with a 
relatively weaker positive linear correlation. According to Mirzaee et al. (2016b), there is a 
non-linear association between the SOM content and the PCs. Consequently, the relationship 
between the measured and expected SOM is linear and positive, but it is weaker. On the other 
hand, the results for the ordinary methods, OK and SK, show steady trends, suggesting that the 
relationship between the measured and predicted SOM content is minimal or non-existent. 

Spatially, the SOM content predicted by ordinary and hybrid geostatistical methods shows 
a relatively similar pattern, with the western part of the study area presenting with the largest 
concentration. This is attributed to agricultural areas, which also dominate in the western 
region. This area consists of small-scale farms that play an important role in influencing the 
formation and maintenance of SOM content (see Fig. 4). For example, since crops are regularly 
grown in agricultural areas, there is a regular supply of organic matter in the form of leaf litter 
and stems added to the soil (Behera and Prasad, 2020). Additionally, soils in agricultural 
landscapes are typically maintained regularly through irrigation and manure applications to 
increase crop yields. This adds to the enrichment of the SOM content (Bot and Benites, 2005). 
In part, rangeland could also have contributed to a higher proportion of SOM, as it often extends 
over large naturally vegetated areas  and includes animal manure from livestock grazing. As 
such, it can influence the SOM content in the region (Haynes, Dominy and Graham, 2003). 
The central to eastern regions of the study area are subject to severe erosion (Fig. 4(a; b)), 
which may explain the lower percentages of SOM content. Phuong and Son (2017) noted that 
SOM and rich topsoil are lost  through soil erosion. In their SOM prediction of a mountainous 
region in China, Liu et al. (2015) observed high spatial variability in various land-use classes. 
Overall, our results highlight the importance of Sentinel-2 imagery and hybrid geostatistical 
methods for predicting SOM content. 
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Fig. 4. Landscape conditions in the study area: − severe erosion problems in the central (a) 

and eastern parts (b); rangeland in the central eastern parts (c); cropland  in the fallow season 
(d); and maize crop residues dispersed across the farmland (e). 

5. Limitations  

Despite the success of hybrid geostatistical methods for the prediction of SOM, the study is 
limited in spatial scope. It could have been extended to the uThukela River Catchment. The 
study also involved a relatively small (52) sample that was split into training and validation. 
Therefore, cross validation is recommended in the future. Future research should also include 
spatial autocorrelation and uncertainty analysis for predictions, thereby highlighting the 
advantages of geostatistical methods over other existing methods. 

 
6. Conclusion 

In this study, we evaluated soil organic matter (SOM) predictions using geostatistical and 
hybrid methods based on Sentinel-2 imagery. We found that hybrid geostatistical techniques 
(ROK and RSK) outperformed ordinary geostatistical methods (OK and SK). Specifically, we 
found that by supplementing the models with auxiliary Sentinel-2 data, such as spectral bands 
and their combinations, it was possible to significantly improve model prediction performance 
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and accuracy. Conversely, the lack of such supplementary data resulted in poor and inaccurate 
predictions. Overall, ROK and RSK, which used the relevant spectral bands, predicted SOM 
content most accurately. They were followed by ROK and RSK, which used principal 
components, and with OK and SK proving to be the least accurate. Therefore, we conclude that 
incorporating Sentinel-2 spectral data can considerably improve SOM content predictions. We 
do, however, recommend the testing of other validation methods, such as cross-validation. 
Because Sentinel-2 imagery is readily available at high spatial and temporal resolutions, the 
combination of Sentinel-2 and geostatistical methods suggests that it may prove highly useful 
in predicting SOM content. Using such techniques has potential for the sustainable monitoring 
of SOM content on varying geographic scales. Furthermore, important conclusions about SOM 
variability can be derived to guide land management practices, particularly for countries such 
as South Africa, with a paucity of SOM information, and whose economies depend mainly on 
land-based resources. Further studies are recommended to quantify and predict SOM content 
on a broader scale. 
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