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Abstract  

Lantana camara L. (LC), an alien invasive plant species, negatively impacts natural habitats globally. 
In East Africa, it is one of the habitat’s transforming species that requires urgent mapping to support 
conservation actions. Its spatial distribution has not been adequately established, especially within forest 
habitats. In this study, we sought to identify Sentinel-2 broadband spectral features that could 
discriminate LC from co-occurring vegetation in a forest habitat. In-situ leaf-level hyperspectral 
measurements of LC and co-occurring species, namely, Neonotonia wightii (NW), Cucumis 
maderaspatanus (CM) and Ocimum gratissimum (OG), were collected in a one-hectare site in the 
Muringato forest area during the dry and wet seasons using two handheld spectroradiometers covering 
wavelength ranges of between 340–820 nm and 635–1100 nm. The leaf-level reflectance measurements 
were used to simulate Sentinel-2 wavebands, which were subsequently used to compute new band 
combination indices of type Normalized Difference (ND), Simple Ratio (SR), Difference (D) and Inverse 
Difference (ID) and published Sentinel-2 multispectral indices. The most spectrally significant features 
were selected using the Boruta and the Guided Regularized Random Forest (GRRF) methods. Jeffries–
Matusita (JM) distance analysis was used to quantify the spectral separability of species class pairs 
using selected spectral features. The findings of this study showed that the selected Sentinel-2 spectral 
features that produced perfect separability accuracies of ≥97% for LC class pairs consisted of mostly 
the newly developed band combination indices and, to a lesser extent, the published Sentinel-2 indices. 
Notably, the separability analysis produced a unique set of spectral variables that accentuated the 
spectral properties of LC class pairs in both seasons and further pointed to the influence of the seasonal 
spectral variabilities of the species. Moreover, the Boruta method resulted in the selection of fewer 
spectral variables (2–12 variables) than the GRRF method, which resulted in the selection of two to19 
variables for species class pair separability. Overall, the separability results demonstrate the potential 
of separating LC from other vegetation with freely available Sentinel-2 image data. The significant 
spectral variables identified in this study could be used for the seasonal mapping of LC and for further 
aid in the early detection and targeted management of the species in affected forest habitats.  

Keywords: Alien invasive plant species, Lantana camara L., Sentinel-2, field spectroscopy, 
multispectral vegetation indices 
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1. Introduction  

Alien invasive species pose greater risks to the optimal functioning of natural ecosystems and the 
growth of local native flora (Rajah et al., 2019). Despite history showing unintended negative outcomes 
after alien species have been introduced to ecosystems where they do not occur naturally, dangerous 
introductions continue. Some alien species, for example, Lantana camara L. and Opuntia stricta, have 
drawn global attention owing to their serious impacts on biological diversity and human activities and 
have been listed among the world’s worst invasive alien species (Global Invasive Species Database, 
2023).  Positive strides have been made towards growing public awareness of the risks posed by alien 
invasive plant species.  Witt et al. (2018) have provided a glimpse of the several species that are 
considered to have the greatest impacts in terms of transforming natural ecosystems within the East 
African region. With such information in the public domain, collective conservation actions could be 
devised through policy and community engagement. Key conservation areas in Kenya, particularly in 
the Mt. Kenya Forest and the Aberdare Forest reserves, have had to face the challenges of invading plant 
species such as Lantana camara L. (LC), Caesalpinia decapelata, Datura dothistroma, Acacia 
melanoxylon, Solanum incanum, Acacia meansii, Resinus communis and Rubus stendineri  (Kenya Forest 
Service, 2010; Kenya Wildlife Service, 2010). Among these species, LC has been cited extensively in 
other jurisdictions as a problematic species whose adaptability to a wide range of natural environments 
has hindered the containment efforts in respect of its spread (Goncalves et al., 2014; Kimothi and Dasari, 
2010; Negi et al., 2019). The risk of LC spreading into protected ecosystems such as Mt. Kenya and the 
Aberdare range may be greater under future changing climatic conditions (Waititu et al., 2022).  Owing 
to its ability to dominate other plant species within infested areas, thereby leading to diminished 
agricultural production and livestock pasture areas, the negative impacts of LC on local livelihoods have 
been felt in some parts of Uganda  (Shackleton et al., 2017).  

Efforts to mitigate the spread of invasive plant species often require regular determinations of their 
spatial distribution to identify the trends and patterns of their spread for better decision-making and 
sustainable management of the environment (Royimani et al., 2019). In this regard, several studies have 
demonstrated the utility of leaf-level and canopy-level field hyperspectral reflectance datasets in 
discriminating plant species (Große-Stoltenberg et al., 2016; Mureriwa et al., 2016; Mudereri et al., 
2020). Hyperspectral datasets provide high spectral resolution information that enhances vegetation 
mapping at the community and species level (Hennessy et al., 2020). Therefore, the use of these datasets 
could be explored for the mapping of invasive plant species. However, owing to inadequate resources to 
acquire them, especially in low-income countries, there is a challenge in accessing hyperspectral imagery 
datasets for vegetation mapping. It is envisaged that the current situation might change soon as new 
hyperspectral earth observation sensors planned for deployment begin providing the much-needed 
hyperspectral imagery datasets for vegetation mapping (Transon et al., 2018). In the meantime, some 
recent studies have exploited the benefits of the readily available multispectral images (e.g., those from 
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the new generation satellite imaging sensors) such as the Sentinel-2 Multispectral Instrument (MSI), 
which has improved performance accuracies in the detection of various vegetation species (Transon et 
al., 2018). Recently, Dube et al. (2020) established that mapping LC with Sentinel-2 image data produces 
higher classification accuracies than would be the case using Landsat 8 OLI data. The superior 
performance may be attributed to the spatial resolutions of 10 m, 20 m and 60 m of the new generation 
Sentinel-2 improved band, and its improved spectral wavelength ranges that enhance the detection of 
various geophysical variables (Transon et al., 2018).  

It is well known that sound management decisions concerning invasive alien plant species require the 
development of a reliable information database in respect of the spatial distribution of the species in a 
given area. One of the strategies used for mapping the spatial distribution of species involves the use of 
spectral vegetation indices. Therefore, this study aims to derive useful Sentinel-2 waveband spectral 
indices from in situ leaf-level measurements through band combinations and to assess them with the 
published Sentinel-2 indices for discriminating LC from its co-occurring species.  As pointed out in the 
literature, the use of spectral vegetation indices may identify changes in the bio-physical variables of 
plants (Mahlein et al., 2013) and allow for distinctions to be made among the different vegetation covers 
(Große-Stoltenberg et al., 2016). When extracting a given vegetation characteristic, vegetation indices 
help differentiate background reflectance from soils, atmospheric disturbances, the sensor angle of 
orientation, and the sun’s azimuth (Fang and Liang, 2014).  A review by Royimani et al. (2019) listed 
several vegetation indices, namely, Normalized Difference Vegetation Index (NDVI), Principal 
Component Analysis (PCA), Enhanced Vegetation Index (EVI), Tasseled Cap (TCap), Simple Ratio 
(SR), Soil Adjusted Vegetation Index (SAVI), Visible Atmospherically Resistant Index (VARI), and 
Normalized Difference Moisture Index (NDMI) as the most commonly used indices in the mapping of 
alien invasive plant species. This review points to the importance of assessing the applicability of the 
existing indices in vegetation studies as they may perform differently depending on the different 
vegetation covers. Furthermore, airborne and space-borne remote sensing sensors possess varying 
configurations, such as spectral sensing range, instrumentation, resolutions and platforms, thereby posing 
a challenge in developing a single vegetation index for mapping vegetation with the differing datasets 
that result (Xue and Su, 2017). By using field spectral reflectance data and resampling to the sensor-
specific wavebands, a thorough analysis could be applied through feature selection and separability 
analysis to identify spectral indices or variables that could potentially single out LC from its other co-
occurring species.   
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2. Materials and Methods 

2.1. Area of Study 

The area chosen for study is in Central Kenya, Nyeri County. It lies between Latitudes 0˚ 38’ 49” S 
and 0˚ 0’ 23” N and Longitudes 36˚ 36’ 17” E and 37˚ 18’ 30” E, as shown in Figure 1. Notable physical 
features in Nyeri County include Mt Kenya, to the east, which stands at an elevation of 5,199 m above 
mean sea level (a.s.l) and the Aberdare range, to the west, standing at 3,999 m a.s.l. The selected sampling 
site is a one-hectare area in the Muringato forest which is rich in native trees and floral diversity. The 
site contains a large patch of shrub vegetation composed of mainly LC and co-occurring climber species, 
namely, Neonotonia wightii (NW), and Cucumis maderaspatanus L. (CM) and the perennial herb 
species, Ocimum gratissimum L. (OG). The site slopes gradually towards the nearby Muringato River to 
the south and has well-drained red soil. The Nyeri County climate consists of two rainy seasons, generally 
occurring in March–May (rains of lengthy duration) and October–December (rains of short duration). 
The onset and duration of these rainy seasons may vary yearly (MoALF, 2016). On average, the annual 
rainfall ranges between 1200 and 1600 mm and 500 and 1500 mm during the long and short rain seasons, 
respectively, while the monthly mean temperatures range between 12.8˚C and 20.8˚C (Government of 
Kenya, 2018). 

 

Figure 1. The geographical location of the study area and the hyperspectral data sampling layout at the 
one-hectare Muringato forest site. (Administrative boundary layer source: GADM database (www. 

gadm.org) under CC BY 4.0 license (https://gadm.org/license.html)). 
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2.2. Field Hyperspectral Data Collection 

Systematic transect lines were designed over a Sentinel-2 image scene of the site covering 100m 
(length) and 100m (width). Five transect lines were laid out at a spacing of 20m and sampling locations 
were placed along the transect lines at eight metres apart (Figure 1). Spacing the sampling locations at 
eight metres ensured that the sampled species at these locations were individual plant species. LC grows 
to a height of two to three metres and its branches cover an area of approximately one square metre 
(Sharma et al., 1981). The field measurement campaign was planned to coincide with the Sentinel-2 
image acquisition date (±2 days) during the dry season (August 2021) and wet season (January 2022) 
(see Figure 2). Sampling locations falling on bare ground were not sampled (Figure 1). Samples from 53 
sampling locations were measured. Leaf-level hyperspectral reflectance measurements of the identified 
four dominant species, LC, NW, CM and OG, were taken using two portable field spectroradiometers 
manufactured by Apogee Instruments, Inc (https://www.apogeeinstruments.com) and having 
wavelengths ranging from 340 to 820nm and 635 to 1100nm. The wavelength resolution of the 
instrument is three nanometres (3nm) (full-width half maximum) and the spectrum recording interval is 
one nanometre (1nm). Three to five mature leaf samples were selected from branches forming part of the 
top canopy of the sunlit plants. The leaves were plucked from these branches and placed on a black 
cardboard sheet for immediate spectral reflectance measurement. The measurements were done with a 
nadir-looking 25° spectroradiometer reflectance head (Mureriwa et al., 2016). The internal averaging for 
the instrument was set to 3 before a final measurement was recorded for each leaf. Calibration of the 
spectroradiometers was done using a Zenith Polymer® white reflectance panel (~99% of reflectance) 
manufactured by https://sphereoptics.de/ and the instrument dark noise was corrected by taking the dark 
reflectance value by using the black cap supplied with the spectroradiometers. Spectral reflectance 
measurements were taken under sunny conditions − between 10:00 am and 02:30 pm (Mureriwa et al., 
2016). The instruments were regularly calibrated during measurements to account for the sun’s 
illumination changes in the field.  
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Figure 2. Monthly average precipitation values for the Muringato forest sampling site for 2021 and 
2022. 

2.3. Hyperspectral Data Pre-processing  

Spectral reflectance data pre-processing and analysis were done in R Statistical software (R Core 
Team, 2021) and the R package “hsdar” (Lehnert et al., 2019). Raw spectral reflectance data were 
subjected to a filtering process to remove spectral reflectance noise. A Savitsky-Golay filter with a length 
of 25nm was used for this purpose and followed by a similarity test using spectral angle mapper (SAM) 
(Chauhan and Mohan, 2014) to detect and remove outliers. Pre-processed hyperspectral reflectance data 
(Table 1) were then resampled to Sentinel-2 sensor wavebands. Sentinel-2 wavebands 1 to 9, covering 
the field hyperspectral data wavelength range, were resampled, as detailed in Table 2.  

 
Table 1. Pre-processed spectral reflectance data used in the species discrimination analysis. 

Species code Season Wavelength range 
(340 – 820 nm) 

Wavelength range 
(635 – 1110 nm) 

LC Dry 116 116 
Wet 210 212 

NW Dry 55 56 
Wet 75 75 

CM Dry 33 43 
Wet 38 39 

OG Dry 11 12 
Wet 12 13 
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Table 2. Spatial and spectral characteristics of resampled Sentinel-2 wavebands (B1 to B9).  
Source: (ESA, 2023) 

 

 

 

 

 

 

 

 

 

 

 

2.4. Computation of Multispectral Indices 

Eighty-five (85) Sentinel-2 vegetation indices (VIs) published in the online index database 
(www.indexdatabase.de) were selected. They were based on the resampled Sentinel-2 wavebands and 
subsequently calculated for both seasons. In addition to these published indices, new multispectral 
indices were developed for species separability analysis. The newly developed indices were of four types, 
namely, simple ratio (SR), normalized difference ratio (ND), difference (D), and inverse difference (ID). 
These indices were calculated considering both the direct and inverse relationships (i.e. interchanging 
reflectance at a given wavelength, Rλi, with wavelength, Rλj, in the formulas). Formulas used to compute 
the new multispectral indices were adopted from Song and Wang (2022),  as shown in equations 1–4 (R 
denotes the spectral reflectance at wavelengths, λi and λj ). 

𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 =  𝑅𝑅𝜆𝜆𝜆𝜆
𝑅𝑅𝜆𝜆𝜆𝜆

            [1] 

𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗 =  
𝑅𝑅𝜆𝜆𝜆𝜆−𝑅𝑅𝜆𝜆𝜆𝜆
𝑅𝑅𝜆𝜆𝜆𝜆+𝑅𝑅𝜆𝜆𝜆𝜆

          [2] 

𝐷𝐷𝑖𝑖,𝑗𝑗 =  𝑅𝑅𝜆𝜆𝜆𝜆 − 𝑅𝑅𝜆𝜆𝜆𝜆           [3] 

𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗 =  1
𝑅𝑅𝜆𝜆𝜆𝜆

− 1
𝑅𝑅𝜆𝜆𝜆𝜆

         [4] 

Sentinel-2 
band 

Band name Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

Wavelength 
range (nm) 

Spatial 
resolution 
(metres) 

B1 Coastal aerosol 442.7 21 433–453 60 
B2 Blue 492.4 66 458–523 10 
B3 Green 559.8 36 543–578 10 
B4 Red 664.6 31 650–680 10 
B5 Vegetation Red edge 1 704.1 15 698–713 20 
B6 Vegetation Red edge 2 740.5 15 733–748 20 
B7 Vegetation Red edge 3 782.8 20 773–793 20 
B8 NIR 832.8 106 785–900 10 
B8A Narrow NIR 864.7 21 855–875 20 
B9 Water vapour 945.1 20 935–955 60 
B10 SWIR - cirrus 1373.5 31 1360–1390 60 
B11 SWIR1 1613.7 91 1565–1655 20 
B12 SWIR2 2202.4 175 2100–2280 20 
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2.5. Statistical Analysis 

Before analysing the resampled species spectral reflectance curves, we subjected the reflectance data 
to a normality test by using the Kolmogorov-Smirnov test (Berger and Zhou, 2014) in the R “stats” 
package (R Core Team, 2021). The test showed that the resampled spectral reflectance data did not follow 
a normal distribution (p ≤ 0.05). Therefore, the Kruskal-Wallis H test (Kruskal and Wallis, 1952), a non-
parametric test, was used to explore whether there were significant differences among the spectral 
reflectance curves of the species. We further performed a pairwise comparison of the reflectance curves 
of the paired species using the Wilcoxon rank sum test with continuity correction (“BH” method) to 
determine the pairs with significant differences. 

2.6. Feature Selection 

The feature selection spectral variables were grouped into six categories: resampled Sentinel-2 
wavebands, published multispectral indices and new band combination indices (i.e. SR, ND, ID and D 
indices) for the dry and wet seasons. These grouped spectral variables were individually subjected to the 
feature selection process. The selected spectral variables per group were combined and used in the 
separability analysis of LC vs other species class pairs (i.e. LC vs NW, LC vs CM and LC vs OG). The 
feature selection procedure aimed to identify the most informative spectral variables that could 
discriminate LC among other species. The respective number of spectral variables used per group is 
presented in Table 3. 

 
Table 3. The number of spectral variables subjected to the feature selection process. 

Groups of spectral variables Spectroradiometer wavelength 
range (340 – 820) nm 

Spectroradiometer wavelength 
range (635 – 1100) nm 

Resampled Sentinel-2 bands n=8 n=7 
Published Sentinel-2 multispectral 
indices n=40 n=45 

SR indices n=56 n=42 
ND indices n=56 n=42 
D indices n=56 n=42 
ID indices n=56 n=42 
Total n = 272 n = 220 

 

We used two popular feature selection methods, the Boruta algorithm (Kursa and Rudnicki, 2010), a 
wrapper method designed around the Random Forest (RF) algorithm, and the Guided Regularized 
Random Forest (GRRF) algorithm (Deng and Runger, 2013), an embedded approach. Both methods were 
implemented in R statistical software (R Core Team, 2021) and in the “caret” package (Kuhn, 2020). 
The GRRF algorithm was implemented in the R package, “RRF”, (Deng, 2013) while the Boruta 
algorithm was implemented in the “Boruta” package (available at https://CRAN.R-
project.org/package=Boruta). The advantage of the Random Forest method is that it can be used for 

https://cran.r-project.org/package=Boruta
https://cran.r-project.org/package=Boruta
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feature selection (Maxwell et al., 2018). Features selected through the Boruta method have been found 
to enhance land cover classification accuracies with multi-sourced, multi-sensor data  (Duro et al., 2012). 
On the other hand, Izquierdo-Verdiguier and Zurita-Milla (2020 showed that substantial improvement in 
the accuracies of classification and regression models was achieved when GRRF-selected features were 
used instead of the ordinary RF-selected features. The GRRF method uses a coefficient of regularization 
parameter (coefReg) in the RRF algorithm to guide the feature selection process. The coefReg is obtained 
using two equations (equations 5 and 6). 

𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
max(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)          [5] 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝑖𝑖𝑖𝑖𝑖𝑖      [6] 

Equation 1 normalises the feature importance scores (impRF) obtained by means of the ordinary RF 
algorithm, while equation 2 gives a weighted average. The gamma values are user-defined and range 
between 0 and 1. Values close to 1 execute higher penalties, thereby leading to only a few feature 
selections, while values close to 0 lead to lower penalties and hence more features are selected. We chose 
a gamma value of eight (8) to obtain at least two (2) spectral features with the highest discriminatory 
power per spectral variable group, as indicated in Table 3. 

2.7. Spectral Separability  

A further step to quantify the potential of the Boruta and the GRRF-selected spectral features in 
separating species class pairs was taken by applying the Jeffries–Matusita (J-M) distance analysis. 
Several studies (Adam and Mutanga, 2009; Ouyang et al., 2013; Schmidt and Skidmore, 2003) have 
pointed to the importance of performing this step when determining species spectral separability. The J-
M distance computations were done using the “spectral.separability” function in the “spatialEco” 
package (Evans and Murphy, 2021). The function gives J-M distance values ranging from 0 (lower 
bound) to ~1.4142 (√2) (upper bound) (Ouyang et al., 2013). This translates to 0% to 100% classification 
accuracies between the respective class pairs. Based on their contribution, the best-performing spectral 
features – as indicated by their J-M values − were identified and ordered from the highest to the lowest. 
Starting with the individual feature with the highest J-M value, additional features were added 
successively until a J-M distance value of ≥1.3718 (≥ 97% separability accuracy) was achieved. The 
≥97% value was taken as the acceptable classification accuracy of our species class pairs (Adam and 
Mutanga, 2009).  

2.8. Statistical Comparison of Spectral Variables selected by the GRRF and Boruta Methods 

A statistical test was used to determine whether there were significant differences between the spectral 
features selected for species discrimination through the GRRF and Boruta methods. Before this analysis, 
these two sets of variables were subjected to a normality test using the Kolmogorov-Smirnov test (Berger 
and Zhou, 2014). They were found to be not normally distributed. Following this result, the Wilcoxon 
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rank sum test or the Mann-Whitney U test, a nonparametric test that compares values from two groups, 
was deemed appropriate since the datasets were not normally distributed (Taylor et al., 2012). Two 
sample Wilcoxon tests on rows were performed using the package “matrixTests” (Koncevicius, 2020) 
in R statistical software. The statistical differences between the two datasets i.e., the two sets of variables 
selected by the GRRF and Boruta methods, were assessed at a five percent (5%) significance level (α = 
0.05).  

 

3. Results 

3.1. Species Reflectance Curves 

The mean spectral reflectance curves for the leaves of the study species are presented in Figure 2. The 
Kruskal-Wallis H test and the Wilcoxon rank sum test indicated that the OG reflectance curves 
significantly differed in bands 1, 2, 3, 6, 7, 8, 8A and 9 (Figure 2a). These channels may have the potential 
to discriminate OG from the rest of the species during the dry season. A comparison of the LC, CM and 
NW spectral curves for the dry season showed spectral similarity during the dry season. In contrast, the 
spectral reflectance curves for the species for the wet season indicated significant spectral differences 
between LC and the other species curves in bands 1 to 6. In particular, bands 4 and 5 showed significant 
differences between LC vs the CM, NW and OG class pairs. These results indicate the potential of the 
different spectral curve regions in discriminating LC from the other species. The level of separability of 
the species pairs was revealed in the computation of the J-M distance values.   
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Figure 2. Resampled Sentinel-2 spectral reflectance curves for the dry season (a) and wet season (b). 
Bands highlighted in  the grey background indicate significant spectral differences among the 

compared species pairs. 
 

3.2. Feature Selection and Separability Analysis 

The GRRF and Boruta methods yielded two sets of important spectral variables for species 
discrimination. Out of a total of n=492 spectral features, the GRRF method selected considerably fewer 
spectral features per class pair than the Boruta method (Table 4).  
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Table 4. A summary of the number of selected spectral features for species class pair separation in the 
dry and wet seasons. 

Species class pair    LC vs CM LC vs NW LC vs OG 

GRRF method  
Dry season 46 47 25 
Wet season 22 18 17 

Boruta method  
Dry season 158 86 252 
Wet season 186 213 134  

 Spectral separability analysis of the selected features using the J-M distance analysis produced fewer 
significant spectral features for species class pair separation. A set of spectral variables that produced 
acceptable class separability accuracies (≥97% of classification accuracy) is presented in Figure 3. These 
results reveal that, regardless of the feature selection method used, the selected features were unique for 
each of the species class pairs. Notably, relatively fewer spectral features that produced acceptable class 
separability accuracies were obtained from features selected by the Boruta method (LC vs CM (n=12, 
n=12), LC vs NW (n=9, n=12), and LC vs OG (n=2, n=8) for the dry and wet seasons, respectively) 
than those from the GRRF method (LC vs CM (n=19, n=14), LC vs NW (n=15, n=14), and LC vs OG 
(n=2, n=4) for the dry and wet seasons, respectively). In addition, the results showed that the SR, ND, 
ID and D indices constructed in this study dominated the list of spectral variables that give maximum LC 
class separability accuracy in both seasons. Several Sentinel-2 published indices, shown in Figure 3 and 
Table 5, featured among the selected spectral variables suitable for LC class separability in both seasons. 
The Sentinel-2 wavebands used in the construction of the new indices perfectly separating LC from the 
other species were distributed across the ten resampled Sentinel-2 wavebands (Bands 1 to 9) in both 
seasons, but apart from those separating the class pair, LC vs OG (Figure 4).  The NIR waveband 
appeared to be most important in separating the LC vs CM and LC vs NW class pairs in the dry season, 
while the red, green and red-edge waveband regions were important for the separation of the LC vs OG 
class pair. During the wet season, most of the spectral indices chosen for the separation of the LC vs CM 
pair were constructed with Sentinel-2 bands 5 (Red edge 1) and 4 (Red), while indices giving perfect 
separation of the LC vs NW pair were constructed with bands 5 and 3 (Green).  The separation of LC vs 
OG in the wet season consisted of indices constructed with bands 6 (Red edge 2) and 7 (Red edge 3). 
 



South African Journal of Geomatics, Vol. 14. No. 2, July 2025 
 

216 
 

 

Figure 3. Sets of Boruta and GRRF selected spectral variables that produced ≥97% separability accuracy for the LC class pairs. The 
set of features for the dry season is shown in (a) and for the wet season in (b). Highlighted features in red font are the selected 

published Sentinel-2 indices. Bi in the spectral variables denotes the Sentinel-2 band number. 
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Table 5. The names and formulas of published Sentinel-2 multispectral indices selected by the GRRF and Boruta methods for species 
class pair separation per season. Bi denotes the Sentinel-2 band number. 

S/N Index name Formula Class pair Season Method 
1 Anthocyanin reflectance index (ARI) 1/𝐵𝐵3 −  1/𝐵𝐵5  LC vs NW Wet Boruta 
2 Ashburn Vegetation Index (AVI) 2.0 × 𝐵𝐵9 −  𝐵𝐵4  LC vs NW Dry  GRRF 
3 CRI700 (Datt1) 𝐵𝐵8 −  𝐵𝐵5 / 𝐵𝐵8 −  𝐵𝐵4  LC vs CM  Wet Boruta 
4 Green leaf index (GLI) (2 × 𝐵𝐵3 −  𝐵𝐵5 −  𝐵𝐵1) / (2 × 𝐵𝐵3 +  𝐵𝐵5 +

 𝐵𝐵1)  
LC vs NW Wet GRRF/Boruta 

5 Inverse reflectance 550 (IR550) 1/𝐵𝐵3  LC vs NW Wet Boruta 
6 Leaf Chlorophyll Index (LCI) 𝐵𝐵8 −  𝐵𝐵5 / 𝐵𝐵8 +  𝐵𝐵4  LC vs NW Wet GRRF 
7 Maccioni 𝐵𝐵7 −  𝐵𝐵5 / 𝐵𝐵7 −  𝐵𝐵4  LC vs CM Dry/Wet GRRF/Boruta 
8 Modified NDVI (mNDVI) (𝐵𝐵8 −  𝐵𝐵4) / (𝐵𝐵8 +  𝐵𝐵4 −  (2 × 𝐵𝐵1))  LC vs NW Wet GRRF 
9 Modified Chlorophyll Absorption in Reflectance 

Index 1 (mCARI1) 
1.2 × (2.5 × (𝐵𝐵8 −  𝐵𝐵4) − 1.3 × (𝐵𝐵8 −
 𝐵𝐵3))  

LC vs NW Dry  GRRF 

10 Modified Simple Ratio (mSR) 𝐵𝐵8 −  𝐵𝐵1 / 𝐵𝐵4 − 𝐵𝐵1  LC vs OG Wet GRRF 
LC vs CM  Wet Boruta 
LC vs NW Wet Boruta 

11 Modified Triangular Vegetation Index 2 (mTVI2) 1.5 × ((1.2 × (𝐵𝐵8 −  𝐵𝐵3) − 2.5 × (𝐵𝐵4 −
 𝐵𝐵3))/ ((2 × 𝐵𝐵8 +  1) ^2 −  6 × 𝐵𝐵8 −
 5 × (𝐵𝐵4) ^0.5) ^0.5)  

LC vs NW Dry  GRRF 

12 Normalized Difference 550/650 Photosynthetic 
vigour ratio (PVR) 

𝐵𝐵3 −  𝐵𝐵4 / 𝐵𝐵3 +  𝐵𝐵4  LC vs OG Dry  Boruta 

13 Pigment-specific simple ratio C2 (PSSRc2) 𝐵𝐵8 / 𝐵𝐵2  LC vs NW Wet Boruta 
14 Renormalized Difference Vegetation Index (RDVI) (𝐵𝐵8 −  𝐵𝐵4) / (𝐵𝐵8 +  𝐵𝐵4) ^0.5  LC vs CM Dry  GRRF 
15 Red-Edge Inflection Point 1 (REIP1) 700 +  40 × ((((𝐵𝐵4 +  𝐵𝐵7)/2)  −  𝐵𝐵5) /

 (𝐵𝐵6 − 𝐵𝐵5))  
LC vs CM Wet GRRF/Boruta 

16 Shape index (IF)  (2 × 𝐵𝐵5 −  𝐵𝐵3 −  𝐵𝐵1) / (𝐵𝐵3 −  𝐵𝐵1)  LC vs NW Dry/Wet GRRF/Boruta 
17 Simple Ratio 550/670 𝐵𝐵3 / 𝐵𝐵4  LC vs OG Dry  Boruta 
18 Simple Ratio 735/710 𝐵𝐵6 / 𝐵𝐵5  LC vs CM  Wet Boruta 
19 Simple Ratio 850/710 (Datt2) 𝐵𝐵8 / 𝐵𝐵5  LC vs CM  Wet Boruta 
20 Simple Ratio 860/708 𝐵𝐵8𝐴𝐴 / 𝐵𝐵5  LC vs CM  Wet Boruta 
21 TCARI/OSAVI   3 × (𝐵𝐵5 −  𝐵𝐵4)  − (0.2 × (𝐵𝐵5 −  𝐵𝐵3)  ×

(𝐵𝐵5/𝐵𝐵4)) / (1 + 0.16)  × ((𝐵𝐵8 −  𝐵𝐵4)/
 (𝐵𝐵8 +  𝐵𝐵4 +  0.16))  

LC vs CM Wet GRRF 

22 Visible Atmospherically Resistant Index Green 
(VARIgreen) 

(𝐵𝐵3 −  𝐵𝐵4) / (𝐵𝐵3 +  𝐵𝐵4 −  𝐵𝐵2)  LC vs CM Dry  GRRF 
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Figure 4. The frequency of the selected Sentinel-2 wavebands that were used to construct new spectral 
indices for the separation of species class pairs for the dry season (a) and wet season (b). 

 

3.3. Significance Test between the GRRF and Boruta-selected Spectral Variables  

The results of the Wilcoxon rank sum test presented in Figure 5 show that the p-values were greater 
than 0.05 (p>0.05), thereby indicating that the two sets of spectral variables did not present with 
significant differences in their performance. This suggests that despite the differences in the sets of 
individually selected spectral variables through the two methods, each set contained spectrally significant 
variables that perfectly separated the LC class pairs.  
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Figure 5. Boxplot of p-values obtained from a comparison of the selected GRRF and Boruta method 
spectral variables for LC class pair separation. 

 

4. Discussion  

Mapping alien invasive plant species such as the LC in natural environments is crucial to  the 
management of the species. The successful mapping of LC using remote sensing image data may pose a 
challenge when useful spectral features that would enhance its discrimination are unknown.  This study 
sought to identify Sentinel-2 multispectral variables that can discriminate LC from co-occurring 
vegetation. The results from this study have demonstrated that LC could be discriminated from co-
occurring vegetation by using a set of significant Sentinel-2 spectral variables selected through feature 
selection and a separability analysis strategy.  

The initial exploratory analysis of the LC, CM, NW and OG spectral reflectance curves indicated 
visual similarities in some Sentinel-2 wavelength regions. Further statistical analysis performed in this 
study revealed potential spectral distinctions among the species curves. This study has demonstrated that 
using feature selection methods such as GRRF and Boruta and performing class pair spectral separability 
analysis provides an optimal set of spectrally significant variables for species class pair discrimination. 
This concurs with other works, such as Ouyang et al. (2013); Mureriwa et al. (2016); Mudereri et al. 
(2020), which point out that successful discrimination among vegetation covers is achievable through 
feature selection and separability analysis. Results of this study highlight the importance of identifying 
spectrally unique features to differentiate among vegetation covers in satellite images which could be 
particularly useful in the management of invasive species like LC. 

One way to reduce data dimensionality, redundancy and the extraction of unique spectral information 
for species discrimination is through vegetation indices (Thenkabail et al., 2013). Vegetation indices, 
especially the band combination indices presented in this study, were largely selected as significant 
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spectral variables for LC discrimination. This suggests that vegetation indices provide useful spectral 
information for LC class pair discrimination as opposed to the individual Sentinel-2 spectral bands and 
published indices. This concurs with other studies such as one by Rajah et al. (2019), where high 
classification accuracies (~80%) of Rubus cuneifolius were obtained.  In this case, Sentinel-2 vegetation 
indices were used. Notably, Sentinel-2 bands in the red, in the red-edge, and leading up into the near-
infrared regions, were the main ones the that were selected in our study as significant in terms of their 
spectral features. These regions have also been termed crucial in other studies (e.g.Mureriwa et al., 2016) 
in that they discriminate among vegetation covers. In particular, the red-edge region is sensitive to leaf 
spectral variations brought about by the structural characteristics, pigmentation, water content and size 
of the leavges, and are, therefore, valuable in species discrimination (Odindi et al., 2016). 

Although indices of type normalized difference (ND) (e.g., the NDVI) take advantage of the 
reflectance contrast between bands in the NIR range and other bands (Ouyang et al., 2013), the 
construction of such indices may involve bands other than the NIR for enhancing spectral information in 
a given species. For instance, the selected ND indices (B6 – B5 / B6 + B5) and (B3 – B4 / B3 + B4) 
among those enhancing separability of the LC vs CM class pair in the dry season make use of the red-
edge bands (B5 and B6) and the red (B4) and green (B3) bands, respectively. The importance of blue, 
green, red-edge 2, red-edge 3 and NIR Sentinel-2 wavebands in discriminating LC have also been 
reported by Dube et al. (2020). In addition, the results of this study indicate that the SR, D and ID indices 
significantly contribute to the enhancement of the spectral separability of LC from other species.  

Identifying the unique spectral characteristics of a given species facilitates its successful 
discrimination from other vegetation cover types. However, getting such information from multispectral 
sensors may prove difficult on account of the sensor’s inability to record pure signals of individual plants 
in a given location. These sensors often give mixed pixels (a mixture of signals from different plants), 
thereby throwing the whole exercise of image classification to some level of uncertainty (Huang and 
Asner, 2009; Royimani et al., 2019). Nevertheless, several researchers have explored the capabilities of 
such datasets, especially those from new-generation sensors (e.g., Sentinel-2 and Landsat 8) in mapping 
LC in various habitats. For instance, (Dube et al. (2020) reported that Sentinel-2 imagery datasets 
detected LC from other landcovers in a semiarid rangeland ecosystem with an overall accuracy of ~78% 
as opposed to ~65% obtained with Landsat 8. In that study, the Sentinel-2 derived indices, especially the 
red-edge-derived Normalized Difference Vegetation Index (NDVI), were found to improve the LC 
classification compared to the Landsat 8 indices. This concurs with the capabilities of the ND Sentinel-
2 indices derived in our study to detect LC in natural habitats.  

The use of hyperspectral datasets, on the other hand, easily allows for the identification of the unique 
spectral characteristics of species owing to the high spectral resolution inherent in the datasets. However, 
these datasets are usually associated with several challenges, including “the curse of dimensionality” 
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inherent in them, thereby requiring large-scale training samples for reliable image classification 
(Thenkabail et al., 2013) and high costs of accessing the imagery  (Royimani et al., 2019). Feature 
selection procedures, such as those employed in this research, are useful in addressing the challenge of 
dimensionality. However, the high cost of hyperspectral imagery data acquisition may render long-term 
monitoring of invasive species with such datasets impossible for developing nations (Royimani et al., 
2019). Recently, field spectroscopy has gained interest among the scientific community on account of 
the availability of relatively “low-cost” handheld spectroradiometers such as the ones used in this study. 
This has allowed for  studies of the spectral characteristics of vegetation and species-level spectral 
separability analysis. The ultimate goal has been to enhance the monitoring of the vegetation cover on a 
landscape scale (e.g., the LC invasion in forest habitats). In addition, the optimal period for species 
discrimination can be determined through analyses of seasonal hyperspectral datasets, as demonstrated 
in studies such as Ouyang et al. (2013). This present study obtained seasonal datasets (i.e., during the 
dry and wet seasons). Although plant phenology (variability) is influenced by seasonality, the results of 
this study show no preference for any given season over the others in the context of the separability of 
LC from its co-occurring species. A set of spectral variables has been selected for LC discrimination in 
both seasons. These variables may be used in conjunction with Sentinel-2 data on a landscape scale in 
the fractional cover mapping of the Muringato forest area. Future work could also investigate the 
applicability of these indices in mapping LC in other areas outside the Muringato forest. 

 

5. Conclusions  

This study sought to identify spectrally significant Sentinel-2 spectral variables that could be used in 
LC discrimination. The findings of this study have shown that feature selection using the GRRF and 
Boruta methods, and separability analysis using the J-M distance method, can provide for spectrally 
significant variables for LC class pair discrimination in wet and dry seasons. It has been found that 
although some of the available published Sentinel-2 multispectral indices may enhance LC 
discrimination, the use of band combination indices of types ND, SR, D, and ID could significantly reveal 
distinct spectral information important in discriminating LC from other species. This may suggest the 
need for an exploratory analysis of band combination indices of the types mentioned above in conjunction 
with the published indices to extract those that would enhance LC discrimination. By doing this, 
processing times for image classification would be lowered and the detection of LC from Sentinel-2 
images would be improved. This study also confirms the capability of both the GRRF and the Boruta 
method as equally important in selecting a set of the most informative spectral features for LC 
discrimination in both seasons. The spectral features identified in this study could be used for a 
landscape-level classification of LC in the entire Muringato forest with Sentinel-2 imagery datasets. The 
processing chains presented in this study could also be used for other invasive species.  It is envisaged 
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that the creation of regular and reliable maps of LC cover using satellite imagery data and the appropriate 
spectral variables would enhance monitoring programmes focused on invasive species. This will further 
aid conservation managers in making informed decisions on conservation actions to deal with invasive 
species, especially in forested areas. 
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