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Abstract 
This paper discusses the methodologies employed in conducting spatial agricultural censuses in 

the Western Cape Province of South Africa, a region characterized by its diverse agricultural 
landscape and the significant economic contributions of its agricultural sector. The integration of 
comprehensive spatial datasets into planning frameworks facilitates informed decision-making for 
stakeholders, researchers and regional planners, thereby contributing to the resilience of the 
agricultural sector amidst challenges such as climate variability, market fluctuations and competition 
for land resources. The Western Cape Department of Agriculture (WCDoA) thus embarked on a 
process to capture detailed information on agricultural activity in the province, starting in 2013 and 
repeated during 2017/18 and 2022/23. Production data were captured at field, orchard or vineyard 
scale, and in conjunction with all related data on infrastructure and agri-processing facilities. A 
process of a priori photographic interpretation and field mapping, followed by data gleaned from 
expert airborne and ground observations, was implemented, supported by remote sensing data. The 
2022/23 iteration of this survey exploited recent advances in remote sensing machine learning 
techniques to identify annual field crops, supported by an airborne (human-observed) area frame 
sampling process to train and verify the algorithms applied. The resultant data, issuing from time-
series census mapping, reveals spatial patterns of agricultural production, indicates the trajectories 
of the shifts in regional production and highlights opportunities for intensification and 
diversification, whilst addressing regional inequalities, to ultimately focus on and guide strategic 
planning. This research demonstrates successful outcomes in implementing a mixed-method 
approach to spatial agricultural censuses, thereby enhancing the understanding of agricultural 
dynamics and informing strategic responses to evolving agricultural landscapes. 

Keywords: remote sensing; sentinel-2; machine learning; winter wheat, crop classification; 
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1. Introduction 

1.1. The need for a spatial agricultural census in the Western Cape 

Intrinsically, agriculture is a spatial production process and incorporating the spatial locations and 
distribution of agricultural production, has substantial logistical, market and policy implications 
(Senay et al., 2023). A key component of the effectiveness of policies and interventions aimed at 
improving rural well-being, agricultural development, and natural resource sustainability is our 
ability to adequately account for the spatial heterogeneity or disparateness, of socio-economic 
production and environmental conditions. Whether we are able to reliably assess and measure the 
spatial distribution and covariance of both socio-economic and environmental factors will determine 
whether we are able to make the formulation and targeting of appropriate policy and investment 
actions more cost-effective (You et al., 2014). As the agricultural sector develops, spatial census data 
serve as an essential resource in regional planning agencies and help to facilitate compliance with 
spatial planning regulations and mandated Spatial Development Frameworks (Dewar and Kiepiel, 
2012). This is particularly significant in the dynamic context of agricultural commodity production, 
which is responsive to extrinsic factors such as changing markets, climatic shifts, water availability 
and competition for land resources, as is the case in a developing nation such as South Africa. 
Furthermore, there is value in understanding spatial patterns of agricultural production in that they 
might reveal untapped opportunities in, say, intensification and diversification, regional marketing, 
processing and trade, or might even uncover significant levels of regional inequality and as such, be 
helpful in shaping spatially-explicit strategic responses to such opportunities and challenges. 

The Western Cape Department of Agriculture plays a pivotal role in addressing agricultural land-
use issues through policy implementation and development, area-wide planning, land use 
management, extension services and research. The department assists in implementing sustainable 
practices, supports farmers with technical assistance, and ensures compliance with regulations. It also 
conducts research on crop and livestock production, climate adaptation, and is a source of information 
on agricultural land use issues. Overall, the department attempts to foster a balance between economic 
growth, environmental preservation, and social equity in the province's agricultural sector. Prior to 
2013, there were no detailed data on land use in the province other than the broad categories resulting 
from the various Landsat satellite-derived projects over the years.   

In order to better manage its diverse agricultural resources, the Western Cape Department of 
Agriculture (WCDoA) thus commenced with its first detailed airborne agricultural commodity and 
infrastructure census in 2013 (WCDoA, 2014). This was followed by a second iteration in 2017/18 
(WCDoA, 2018) and a third during 2022/23 (WCDoA, 2024a). The third version followed a slightly 
different approach, making extensive use of remote sensing techniques to classify winter annual 
crops. Owing to the novel and technical nature of this approach, the methodology is discussed in 
detail in Section 2.4. These up-to-date and detailed land-use data subsequently provided a quantum 
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shift in the level of planning data available not only to the government but also to regional planning 
partners and a disparate range of agricultural and conservation stakeholders (Wallace, 2021). 

1.2. Study Area 

As shown in Figure 1, the study area is the Western Cape Province, South Africa. This region is 
known for producing fruit and wine and various winter annual crops (grains and oilseeds). It extends 
from latitude 30.430º S to latitude 34.834º S, and from longitude 17.757º E to longitude 24.222º E. 
The province stands out as a prominent agricultural region for South Africa. It is highly diverse in 
terms of its topography, soil types and climate (see annual rainfall figures in Figure 2) and this 
variability dictates the need for either subtle or distinct differences in farming systems and practices 
in the different sub-regions (Wallace, 2018). Agriculture in the region is dependent on the rainy 
season, which is predominantly in the winter months, from June to August, which makes the Western 
Cape ideal for the planting of winter small grain and oilseed crops. The region has a wide range of 
landscapes, from coastal areas to highly mountainous terrain, with deeply dissected valleys, and the 
arid plains of the Karoo. 

 
Figure 1. Western Cape province of South Africa showing the main classes of agricultural 

production. 
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Figure 2. Western Cape province showing the range of long-term average annual precipitation.  

Further information on the climate and physiography of the region is available on the 
CapeFarmMapper Web portal (https://gis.elsenburg.com/apps/cfm/). 

 

2. Methodology for the Agricultural Census 

The methodology used for the Agricultural Census was guided by the specified final deliverables, 
as well as the prescribed technologies to be used, and was focused on working towards achieving the 
main project goals of the WCDoA as follows: 

• The mapping of crop-field boundaries within the Western Cape 

• Associating each field with the crop planted on the field (for the winter and summer 
seasons, as well as for perennial crops. 

• The mapping of agriculturally-related infrastructure in the Western Cape. 

The methodology can be summarised as consisting of the following processes: 

• The development of an up-to-date and accurate field boundary dataset. 

• An aerial survey of sample points to determine the summer annual crops planted per field. 

• An aerial survey of sample points to obtain ground truthing data to be used as part of the 
remote sensing process for winter annual crops. 

https://gis.elsenburg.com/apps/cfm/
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• Remote sensing to assign crop information per field for winter annual crops.   

• An office exercise to assign crop information per field for horti- and viticulture, for flower, 
vegetable and herb production, and for various other uncommon crops. 

• A vehicle-based survey to gather crop information that could not be obtained via the other 
processes. 

• A telephonic survey to gather detailed information on the vegetable crops planted. 

• An office exercise to map agriculturally-related infrastructures, such as dairies and 
feedlots. 

• The collation of data obtained through the different processes and the implementation of 
quality control measures. 

2.1. Field Boundary Dataset 

The development of a high-quality field boundary dataset is of the utmost importance for the 
agricultural census. The field boundary layer is the base dataset on which census deliverables are built 
and provides the foundation for the accurate calculation of the hectares planted for different crops. It 
was therefore deemed important for the boundary of each field to be as accurate as possible.  

The first step in the process was therefore to update all field boundaries in the Western Cape 
province. For the updating process, the latest aerial photography obtained from National Geospatial 
Information (NGI) was used.  

The updating of field boundaries was carried out on different scales, depending on the type of area. 
For the horti- and viticultural areas, the scale was specified as 1:2 500, whilst the updating scale for 
the other areas ranged from 1:5 000 to 1:7 500. 

During the updating process, field boundaries were assigned to different categories, such as, where 
applicable, horticulture, viticulture, pivot irrigation, small-scale farming, etc. These categories were 
used in various processes during the project (e.g., in the selection of sample points for the winter 
aerial survey and in determining the fields to be surveyed during the summer aerial survey).  

2.2. Aerial Survey: Summer Annual Crops 

To determine the hectares planted for summer annual crops, an aerial survey of potentially irrigated 
fields was conducted. The focus in this case was on irrigated fields because the Western Cape is a 
winter rainfall region with relatively small areas planted with summer annuals. 

In preparation for the aerial survey, it was necessary to determine fields that would potentially be 
under irrigation but also more likely to be planted with a summer annual crop. A combination of 
remote sensing and field categorization techniques was used to achieve this goal:  

• Firstly, all field boundaries that had already been categorized as horti- or viticultural during 
the digitizing process were excluded from the sample population as horti- and viticultural 
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crops/fruits are perennial, are usually grown under irrigation and are generally surveyed 
during the comprehensive winter operations. 

• For the remainder of the fields, it was decided to use the Normalized Difference Vegetation 
Index (NDVI) metric, derived from Sentinel-2 imagery, to identify potentially irrigated crops.  

The Sentinel-2 imagery from which the NDVI values were derived was sourced for two periods. 
Firstly, for the start of the summer production season, and secondly, for the period at the peak stage 
of growth for summer crops. An average NDVI value was calculated per field for both periods.  

If the average NDVI value of a field at the peak growth stage indicated dense green vegetation, 
the field was deemed to be planted with a crop under irrigation. From these potentially irrigated fields, 
the average NDVI values at the start of the summer production season were compared. If the latter’s 
NDVI values indicated bare soil, the likelihood of the irrigated crop being a summer annual crop was 
deemed to be high. It was this subset of fields, with a sample point created for each field, that was 
included in the summer aerial survey. 

An aerial survey of the sample points was conducted to determine the crop, represented by each 
sample point, planted on the field. The aerial observation team consisted of a pilot and a skilled 
observer in a helicopter. The observer was responsible for capturing the crop that had been planted 
on the field where the sample point was located. He was also required to indicate whether the crop 
was being produced under rain-fed or irrigated conditions. Data capturing was performed with a 
customized ArcPad interface, with the objective being for the interface to facilitate the capturing of 
accurate and efficient data results. The ArcPad application also included several additional datasets 
to assist the observer in correctly identifying the relevant fields (Fourie, 2015). 

2.3. Aerial Survey: Ground Truthing Data for Winter Annual Crops 

The main objective of the winter aerial survey was to obtain ground truthing data for the remote 
sensing process to determine the winter annual crops planted. For this purpose, statistically selected 
sample points, as well as additional points, were captured during the survey to increase the number 
of data points available for the remote sensing process. 

As a preparatory measure for the aerial survey, the sample points for the survey had to be selected. 
The first step in the process was to design the point frame. A 45m x 45m point grid was generated 
over the Western Cape provincial area, with the grid points outside of the field boundaries being 
excluded. To increase sampling efficiency, the field boundaries were stratified according to the 
probability of finding a winter annual crop of interest. The stratification was based on two very 
important factors: 

i. The categorization of the field boundaries. For instance, categories that indicate crop 
cultivation other than possible winter annual crops, were considered as part of the excluded 
strata (e.g., horticultural, viticultural and nursery plants). 
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ii. The density of field boundaries in an area. Field boundaries within a high-density area were 
classified as “high cultivation”, with other density areas similarly classified as “medium 
cultivation” and “low cultivation”. 

More sample points were used in strata where there was a higher likelihood of finding winter 
annual crops of interest. This facilitated access to the most useful data within the budget constraints.  

Sample point selection was carried out per stratum and within a database environment. The 45m 
x 45m grid points were imported into a database − in separate tables. It is important that sample points 
cover the whole of the area of interest and are evenly spread. To ensure even distributions in each 
case, the separate grid point tables were sorted systematically from west to east and from north to 
south by using the coordinates of each grid point. Within each sorted table, a random starting point 
was chosen. Sample points were then selected at regular intervals according to the number of points 
needed for a specific stratum.  

For the aerial survey, the aerial observation team consisted of a pilot and two observers in a 
helicopter. The service of two observers was necessitated by the need to increase the number of points 
captured in the field over and above the sample points. The capturing was again carried out in a 
customized ArcPad application - the same application used for the summer aerial survey. The only 
difference lay in the contents of the custom interface, which would include buttons and “drop-down” 
lists for the winter crops as opposed to the summer crops − as was the case with the summer aerial 
survey. 

2.4. Remote Sensing of Winter Annual Crops 

During the first and second iterations of the survey, all winter crops were identified by airborne 
and, in some cases, ground observations, as described above. However, owing to financial constraints, 
the third iteration required that the number of flights of the helicopter would be reduced to constrain 
costs. This also provided the WCDoA with the opportunity to explore novel remote sensing 
techniques, particularly given the availability of free Sentinel-2 data and the advances in machine 
learning (ML) and artificial intelligence (WCDoA, 2024a). Prior to the census, the department had 
engaged with the international, not-for-profit Radiant Earth foundation (RE), an academic, 
community-led initiative promoting ML and AI technologies in remote sensing. An international 
competition was held to determine the best performing ML/AI model based on a sample of the 
WCDoA’s 2017 crop census data. These were used as training data for the contestants 
(https://github.com/radiantearth/spot-the-crop-challenge). The winning models are freely available 
on the site and were used in the subsequent ensemble of models tested (Section 2.44). 

2.4.1.  Introduction to the Remote Sensing Component of the 2022/23 Census 

Modern crop classification techniques can provide highly accurate agricultural monitoring results, 
with local governments and decision makers receiving important spatial information for improved 
resource allocation and food security (Bouguettaya et al., 2022; Karthikeyan et al., 2020). Large-

https://github.com/radiantearth/spot-the-crop-challenge
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scale crop classification is especially important in heterogeneous landscapes where to distinguish 
between various crops is challenging (Saini and Ghosh, 2021). The monitoring of these crops using 
traditional field surveys can be costly and labour intensive. Furthermore, the size of a region with 
crops can be difficult to cover in its full extent (Benami et al., 2021; Wu et al., 2023).  

To address these issues, this part of the study integrated remote sensing and ML techniques for 
more efficient crop classification. Currently, remote sensing is at the forefront of modern technologies 
for the monitoring and mapping of crop growth (Omia et al., 2023). In recent years, the satellite 
platform, Sentinel-2, has shown great advances in crop classifications as it provides high resolution 
multi-spectral imagery for modelling (Gumma et al., 2022). For example, Maponya et al. (2020) 
performed a pre-harvest classification of wheat, canola, pasture, lucerne and fallow on a small scale 
using Sentinel-2 and machine learning with high overall accuracy (>80 %) results. This study shows 
that high resolution satellite and ML models can enhance the identification of crops and their 
classification with temporal variability.  

This subsection (Section 2.4) aims to demonstrate the enhancement in satellite technologies and 
machine learning techniques in the mapping of winter crops on a large scale in the Western Cape 
Province, South Africa. The three main objectives of the winter crop mapping were to: 

i. Identify different types of winter cropland (i.e. barley, canola, fallow, lucerne/medics, 
wheat, and oats). 

ii. Evaluate the temporal accuracy of using Sentinel-2 optical imagery for mapping different 
winter crops. 

iii. Establish the best performing machine learning crop classification method for mapping 
winter crops. 

2.4.2. Remote Sensing Methodology 

The methodology flow chart, shown in Figure 3, is the approach used in this study for mapping 
winter crops in the Western Cape. The methodology consists of the following: data collection and the 
preprocessing of satellite imagery; spectral image enhancement by creating monthly means and the 
computation of vegetation indices; model development and hyperparameter tuning using the 
GridSearch technique; crop type prediction, enabled by applying the machine learning models and 
training data; the testing or validation of data for accuracy assessments using testing data; model 
prediction; and ultimately, the creation of a final winter crop map.  
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Figure 3. Overview of the methodology followed in this study. 

 

2.4.3. Remote Sensing Data Collection and Input Features 

Agricultural field data boundaries were obtained from the 2023 winter survey for the Western 
Cape surveyed by the service provider, SiQ (Pty) Ltd. These were used to extract sample points. From 
the available point data, a maximum of 2500 sampling points per class were randomly selected. This 
resulted in some classes having fewer sampling points for training and validation. Crop-type classes 
were chosen based on the field classification. Some classes were grouped together; Fallow, Weeds 
and Stubble were grouped into one class, as Fallow. The crop types and number of samples per class 
for the Western Cape Province are depicted in Table 2. 

The Sentinel-2 Level-2A data were acquired from the European Space Agency (ESA) Copernicus 
mission. These datasets are multi-spectral satellite products with high spatial and spectral resolutions. 
The instruments have 13 spectral bands, including red, green, blue, near-infrared, red-edge, and 
shortwave infrared bands. Only seven of the 13 spectral bands available for Sentinel-2 were selected 
for this study. All the 10-metre resolution bands were resampled to 20-metre resolution levels using 
the nearest neighbour method. 

The heterogeneous landscape of the Western Cape makes distinguishing features on the surface 
difficult. Also, the spectral similarity of crop types is often an issue. Therefore, to extract other feature 
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spaces from the Sentinel-2 spectral bands is necessary. Table 1 lists various vegetation indices derived 
from the multispectral datasets. 

 
Table 1. Description of vegetation indices derived from Sentinel-2 satellite spectral bands. 

Vegetation Indices Abbreviation Formula References 
Anthocyanin Content 
Index ACI 𝑁𝑁𝑁𝑁𝑁𝑁 × (𝑅𝑅 + 𝐺𝐺) Modified from Steele et al. 

(2009) 
Atmospheric Resistant 
Vegetation Index ARVI 

𝑁𝑁𝑁𝑁𝑁𝑁 − (2 × 𝑅𝑅) + 𝐵𝐵
𝑁𝑁𝑁𝑁𝑁𝑁 + (2 × 𝑅𝑅) + 𝐵𝐵

 
Kaufman and Tanre (1992) 

Ashburn vegetation 
Index AVI �𝑁𝑁𝑁𝑁𝑁𝑁 ∗ (1 − 𝑅𝑅) ∗ (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅)� Ashburn (1979) 

Red-edge Chlorophyll 
Index CLRE 

𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 − 1

 
Gitelson et al. (2005) 

Enhanced Vegetation 
Index EVI 2.5 ×

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅
(𝑁𝑁𝑁𝑁𝑁𝑁 + 6𝑅𝑅 − 7.5𝐵𝐵 + 1) 

Huete et al. (1999) 

Excess Green Index EXG 2 ×
𝐺𝐺 − 𝑅𝑅 − 𝐵𝐵
𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵

 

Woebbecke et al. (1995) 

Green Normalized 
Difference Vegetation 
Index 

GNDVI 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺

 
Gitelson and Merzlyak 
(1998) 

Modified Soil-adjusted 
Vegetation Index 

MSI 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 0.5) × (1.0 + 0.5)

 Modified from Huete (1988) 

Modified Simple Ratio MSR (𝑁𝑁𝑁𝑁𝑁𝑁/𝑅𝑅) − 1
(𝑁𝑁𝑁𝑁𝑁𝑁/𝑅𝑅)2 + 1

 
Chen (1996) 

Normalized Difference 
Vegetation Index 

NDVI 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅

 Rouse et al. (1974); Tucker 
(1979) 

Normalized Difference 
Vegetation Index Red-
edge 

NDVIre 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1

 
Barnes et al. (2000) 

Normalized Difference 
Water Index 

NDWI 𝐺𝐺 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺 + 𝑁𝑁𝑁𝑁𝑁𝑁

 
McFeeters (1996) 

Normalized Difference 
Yellowness Index 

NDYI 𝐺𝐺 − 𝐵𝐵
𝐺𝐺 + 𝐵𝐵

 
Sulik and Long (2016) 

Red-edge Normalized 
Difference Vegetation 
Index 

RENDVI 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1

 
Sims and Gamon (2002) 

Red-edge Re-
normalized Difference 
Vegetation Index 

RERDVI 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
�𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1

 
Cao et al. (2013) 

Red-edge Ratio 
Vegetation Index 

RERVI 𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1

 
Cao et al. (2013) 

Soil-adjusted 
Vegetation Index 

SAVI 
(1 + 0.5) × (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅)

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅 + 0.5
 

Huete (1988) 

Triangular Vegetation 
Index 

TVI  [120(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 − 𝐺𝐺) − 200 ∗ (𝑅𝑅 − 𝐺𝐺)]
2

 
Broge and Leblanc (2001) 
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2.4.4. Classification Methods and Model Evaluation 

The study identified four experiments (Table 2) to determine the best approach for winter crop 
classification. The aim for phase 2 of the project was to produce a working methodology for 
accurately mapping the winter crop types. Experiments 1 and 2 were developed using the April to 
November 2023 data, and these experiments used only the vegetation indices described in Table 3 as 
input features. Experiment 1 used the Random Forest classifier developed by Breiman (2001) and for 
this study, the scikit-learn Python library was used for processing (Pedregosa et al., 2011). 
Experiment 2 used the Catboost classifier, which is known as a gradient-boosting algorithm. 
Experiments 3 and 4 used data collected from April to November 2023 and followed the methodology 
described on the website (https://github.com/DariusTheGeek/Radiant-Earth-Spot-the-Crop-
Challenge). For this study, the Pytorch and ensemble learning were omitted, and experiments 3 and 
4 used machine learning techniques (Catboost and LGBM algorithms) from the Radiant Earth Spot-
the-Crop challenge, that aligned well for the purpose of winter wheat classification. 
 

Table 2. Experimental Design for four experiments conducted in this study. 
Experiment Period Experiment Description 
1 April 2023 to November 2023 RF + VIs 
2 April 2023 to November 2023 Catboost + VIs 
3 April 2023 to November 2023 Radiant Earth Catboost 
4 April 2023 to November 2023 Radiant Earth LGBM 

 

Classification evaluation focused on assessing model reliability and performance. First, an 
accuracy assessment was performed to calculate overall accuracy and user’s and producer’s accuracy. 
Second, model performance was evaluated using cross-validation to evaluate the performance on 
different subsets of the training and testing data.1 Furthermore, McNemar’s test2 was applied to 
compare the performance of the models. 

2.4.5. Results - Mapping Winter Cropping System by means of Machine Learning 

For this study area, images were obtained from April to November, and the vegetation indices 
discussed in Table 1 were calculated. Since the winter crops flower between July and September, 
these were expected to be the months where winter crops could be easily identified. Four experiments 
were carried out to identify the best performance of the machine learning algorithms to map winter 
crops in the Western Cape Province. The overall accuracy of these experiments is shown in Table 3. 
The highest overall accuracy was observed for experiment 2 (80.31%) and experiment 3 (81.09%); 
these two experiments also produced the highest kappa statistics of 0.76 and 0.77, respectively. 
Experiment 1 produced the lowest overall accuracy (75.81%) and kappa statistic (0.71). The results 

 
1 This is essential to determine whether the model performs favourably without the overfitting of 

data. 
2 This is a statistical test used to compare the statistical significance among different models. 
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shown here indicate that the Catboost algorithm produces better accuracy models than the other 
machine learning algorithms. 
 

Table 3. The overall accuracy and kappa coefficients for the four experiments using July-to-
September imagery. 

Experiment Experiment Description Image Dates Overall Accuracy (%) Kappa 
1 RF 2023/04-2023/11 75.81 0.71 
2 Catboost 2023/04-2023/11 80.32 0.76 
3 Radiant Earth Catboost 2023/04-2023/11 81.09 0.77 
4 Radiant Earth LGBM 2023/04-2023/11 79.18 0.75 

 

Tables 4 to 7 present the confusion matrices for the four experiments (1 − 4), which provide 
valuable insights into the performance of each experiment for the respective crop types. The 
confusion matrix in each table summarizes the predicted and actual classifications, with the diagonal 
values indicating the correctly classified pixels. These matrices highlight the performance of each 
model by identifying errors within each of the models. The accuracy metrics provided in Table 3 were 
calculated from the results of these confusion matrices. 
 

Table 4. The confusion matrix for crop classification in Experiment 1. 

  Barley Canola Fallow Lucerne/ 
Medics Oats Planted 

Pastures Wheat 

Barley 143 14 24 14 10 0 22 
Canola 6 439 8 14 15 0 12 
Fallow 1 4 651 56 11 13 4 
Lucerne/ 
Medics 2 9 95 466 26 14 8 

Oats 14 15 34 44 204 7 72 
Planted 
Pastures 0 7 37 54 20 94 5 

Wheat 10 5 22 12 21 0 388 
 
 

Table 5. The confusion matrix for crop classification in Experiment 2. 

  Barley Canola Fallow Lucerne/ 
Medics Oats Planted 

Pastures Wheat 

Barley 205 4 8 6 15 0 9 
Canola 3 446 7 10 10 1 9 
Fallow 1 2 685 61 9 11 0 
Lucerne/ 
Medics 5 0 66 465 20 16 9 

Oats 19 4 28 40 219 10 50 
Planted 
Pastures 2 1 31 60 27 99 3 

Wheat 9 3 13 7 30 0 408 
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Table 6. The confusion matrix for crop classification in Experiment 3. 

  Barley Canola Fallow Lucerne/ 
Medics Oats Planted 

Pastures Wheat 

Barley 204 4 10 7 14 1 7 
Canola 5 447 6 10 6 3 9 
Fallow 1 0 692 54 9 13 0 
Lucerne/ 
Medics 3 1 63 466 20 18 10 

Oats 18 2 27 39 222 12 50 
Planted 
Pastures 2 1 27 54 24 113 2 

Wheat 10 5 11 4 33 0 407 
 

Table 7. The confusion matrix for crop classification in Experiment 4. 

  Barley Canola Fallow Lucerne/ 
Medics Oats Planted 

Pastures Wheat 

Barley 192 5 11 9 17 0 13 
Canola 4 442 7 14 8 5 6 
Fallow 0 0 675 71 7 15 1 
Lucerne/ 
Medics 5 1 73 458 23 12 9 

Oats 20 3 37 37 219 8 46 
Planted 
Pastures 1 1 25 72 26 97 1 

Wheat 8 4 11 5 34 0 408 
 

The results from the cross-validation − obtained to further emphasize the accuracy of the models 
− are shown in Figure 4. Experiment 4 showed the highest cross-validation accuracy scores, with the 
median value above 0.825, indicating that the model accurately trained the training samples. With 
median scores close to 0.82, the boxplots and whiskers plots for experiments 2 and 3 show that their 
accuracies consistently indicate similar accuracies. These findings offer high confidence levels as to 
the accuracy of experiments 2, 3 and 4. Unfortunately, with scores below 0.77, experiment 1 produced 
less favourable cross-validation accuracy scores. The median for experiment 1 was also indicated as 
below 0.76. These findings indicate that, overall, the models performed favourably for experiments 
2, 3 and 4, whereas the models created in experiment 1 performed less favourably.  
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Figure 4. The cross-validation accuracy scores for the four experiments. The boxplots are the lower 
and upper quartiles (whiskers in black) and the black line in the boxplot is the median. The circles 
represent outliers in the data outputs, which are data points outside the lower and upper quartiles. 

 

Figure 5 represents the accuracies for experiments 1, 2, 3, and 4 across six different classes (Barley, 
Canola, Fallow, Lucerne/Medics, Planted Pastures, Oats, and Wheat). From these plots, it is evident 
that the models have varying levels of performance across the respective crop classes. Among the 
experiments, experiment 2 (Catboost), experiment 3 (Radiant Earth Catboost) and experiment 4 
(Radiant Earth LGBM) consistently achieved high precision and recall levels and F1-scores across 
most classes, while experiment 1 (Random Forest) produced the lowest classification metrics 
throughout all the classes. In terms of performance per class, Planted Pastures represents the lowest-
performing class across all models − likely a consequence of the inherent heterogeneity of the class. 
Canola proved to be the highest performing class, with all four experiments consistently delivering 
the best metrics of precision, recall and F1-scores for this class.  
 

 
Figure 5. The bar graphs for per-class precision, recall, F1-score and support metrics for each of the 

experiments/classifications. 
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2.4.6. McNemar’s Test of Statistical Significance 

Table 11 presents the results of the McNemar’s test for comparing the performance of the 
respective experiments. This is a statistical test used to calculate the significant difference between 
two paired models and is based on the confusion matrices determined during crop classification. 

A comparison of the experiment 3 results with those of the other three models showed no 
statistically significant differences in the performance of the models. The p-values exceeded the 
significance level of 0.05 in all three comparisons with experiment 3. This indicates that there is no 
strong evidence to suggest that one experiment performed significantly better than the other. The Z-
values also consistently reflected minimal differences in performance amongst the models. These 
findings suggest that, within the context of the data and evaluation metrics, the models exhibit similar 
performance levels, and no clear advantage is to be found in choosing one model over another. 
 

Table 11. McNemar's Test Results for Model Comparisons 

  Z-value p-value 

Experiment 1 vs Experiment 3 0.3162 0.7518 

Experiment 2 vs Experiment 3 0 1 

Experiment 4 vs Experiment 3 0.3536 0.7237 

 

2.4.7. Assessing the Spatial Patterns of Crop Types and Field Mapping for the Winter Crop using 
the Machine learning Method 

The crop-type map representing the Western Cape Province was created using the model from 
experiment 2 (Catboost). The winter crop map indicates that wheat is the dominant crop class in the 
western central region of the province (Figure 6A). Towards the southern to southeastern regions of 
the province where a large section of cropland is located, a more diverse variety of crop types was 
mapped (Figure 6B). The results reveal that the fields were generally mapped homogeneously within 
each field boundary, with few of the field boundaries embracing more than one crop type, although 
this was not always the case. Mixing, also known as pixel mixing, occurs throughout for different 
reasons (e.g., along the field edge/boundary and where features or crop types have similar spectral 
signatures). Environmental factors and crop-health issues could also influence field homogeneity, 
thereby causing inconsistencies in the field.  
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Figure 6. Winter crop type distribution from experiment 2 for the Western Cape. 

 

2.4.8.  Concluding Remarks on the Remote Sensing Approach 

The findings of this study suggest that the Catboost machine learning methods produced the 
highest accuracy results − above 81% overall accuracy for experiment 3. The results of experiment 4 
show only a two percent (2%) difference in accuracy compared to those of experiment 3, and a one 
percent (1%) difference from those of experiment 2, with the results from experiment 1 (RF) showing 
the lowest classification accuracy, with a five percent (5%) difference in overall accuracy as opposed 
to those of experiment 3. The statistical significance of McNemar’s Test shows that the results of 
these experiments produced no significant statistical difference between the performance of the 
models. This indicates that, based on this test, no specific experiment can be identified as being 
significantly superior in accuracy over another. However, based on the overall accuracies of the 
models, the model in experiment 3 was chosen as the final classification for winter crops in 2023. It 
is noteworthy that the other experiments (experiments 2 and 4) also demonstrate success in accurately 
mapping the winter crops for 2023. The following classes were successfully identified: barley, canola, 
fallow, lucerne/medics, planted pastures, wheat, and oats. The greatest confusion arose in the planted 
pastures class. This is generally caused by the concept of pixel mixing, which occurs when the 
different classes are confused, primarily in cases where the spectral signatures are similar for two or 
more classes. This could also be due to the smaller number of available ground truth data points 
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2.5. Assignment of Crop Information for Other Crop Types 

Crops other than winter annual crops and pastures, that is for horti- and viticulture, flowers, 
vegetables and herbs, were excluded from the remote sensing process. For these crops, a different 
approach was necessary to assign the crops to fields.  

An office classification process was followed and can be summarized as follows: 

• Firstly, all fields to which these crops were assigned during the previous census of 
2017/2018 were extracted. 

• For these fields, the crop indicated on the field during the 2017/2018 census was compared 
with the current crop planted, as observed on up-to-date Google Earth imagery, as well as 
on aerial photographs. 

• Should it be found that the crop observed on the indicated imagery is the same as the one 
planted previously, during the 2017/2018 census, the applicable crop would again be 
assigned to the field. 

• Horti- and viticulture where there was a possible or definite change in crop, or other 
discrepancies (e.g., crops that were previously incorrectly classified), were selected to be 
included in a vehicle-based survey. Fields that were potentially planted with new flower 
crops, vegetables and herbs, were also included in the indicated survey. 

2.6. Vehicle-based Survey 

The objective of the vehicle-based survey was to gather information that could not be obtained via 
other means. The information that had to be collected included horti- and viticultural crops which 
could not be categorized via the office classification process, as well as those under shade-netting and 
in tunnels where the crop planted was unknown. For the vegetable survey, it was also necessary to 
obtain the contact details of the vegetable farmers in cases where no or incorrect observations for 
these farms were available. This was one of the few instances where farmers were contacted directly. 

Data capturing for the vehicle-based survey was conducted in ArcGIS. The capturing interface 
that was set up used a Bluetooth GPS to assist the field surveyor in identifying the fields to be captured 
within a moving map display. To facilitate accurate and efficient data capturing, templates were set 
up for all the datasets used in collecting data.  

2.7. Vegetable Telephonic Survey 

A telephonic survey of all vegetable farmers whose contact details were available and valid was 
conducted. The objective of the survey was to obtain production figures from the producers 
concerning the vegetables that had been planted during the year. Owing to the relatively rapid within-
season crop rotations applicable to vegetable production, this was necessary since it is difficult to 
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gain accurate figures on the number of hectares planted under vegetables when other techniques are 
used. 

The farmer survey included questions on the number of hectares planted, the yield and production 
per vegetable crop, with separate sets of figures provided for vegetables planted on open fields, under 
shade-netting, in tunnels and according to other methods.3 Information on crop rotation practices was 
also gathered. 

2.8. Mapping of Agriculturally-related Infrastructures 

An important part of the census project was the capturing and verification of livestock 
infrastructure and agri-processing facilities. The livestock infrastructure captured included 
information on abattoirs and livestock auction facilities, aquaculture, chicken batteries, dairies, 
feedlots and piggeries, as well as other livestock infrastructures (e.g., goat pens and kraals for sheep 
and cattle). With regard to agri-processing, all types of cellars were captured, as well as other types 
of facilities (e.g., packhouses, cool chain, milling and tea processing facilities).  

The process followed, focused on the verification of infrastructures captured during the previous 
census projects, as well as the capturing of new infrastructures. The same aerial photographs were 
used as for the updating of the field boundaries. For the accurate identification of the infrastructures 
to be mapped, it was necessary to zoom in on aerial photographs at a scale of approximately 1:1000. 

Various sources were used for the verification of the infrastructures. These included the internet, 
Google Earth, Google Maps, as well as Google Street View. The verification process entailed 
verifying the location, as well as the existence of an agri-processing facility, where applicable. If it 
could be obtained, it was also necessary to capture attribute data for agri-processing facilities, such 
as the type of facility, the name of the facility, as well as the contact details for the facility. 

2.9. Data Collation and Quality Control 

The information gathered during the various surveys and processes was processed and 
comprehensive quality assurance was performed on all datasets. The specific quality control 
procedures followed, varied among the respective datasets and were set up to be the most appropriate 
for each dataset. An important part of the quality assurance that was carried out, was cross-checking 
among the different datasets. Specifically, the field boundaries and agriculturally-related 
infrastructures, as well as the aerial survey, the vehicle-based survey and the crop assignment process, 
contributed to this process. 

The respective sources of field-based information were combined to create a comprehensive GIS 
dataset that also included field boundaries, with the applicable crop assigned to each field. A separate 
dataset was developed from the summer aerial survey, to provide information on the planted summer 

 
3 “Other methods” in this context refers mainly to the production of mushrooms and 

waterblommetjies. 
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annual crops. Information gathered during the telephonic vegetable survey was processed and linked 
to farming operation boundaries, thereby providing a spatial context for the annual vegetable 
production figures.  
 

3. Results and Open Access to the Data 

The resultant primary database developed in each of the iterations contains detailed information 
(for each of the winter and summer operations) regarding crop type, various commodity sub-
classifications, a field to indicate whether the field/orchard/vineyard appears to be under irrigation, 
date of each record, imagery used to digitise the field boundary (a priori), mode of attribute 
observation, observer name, local municipal area into which the record falls and the area of each 
commodity record. Together with these details, is a spatial database of all agricultural infrastructures, 
such as abattoirs, wine cellars, grain storage facilities, shade-netting, tunnels, dairies, piggeries and 
various other agri-processing facilities.   

During the 2022/23 iteration, game farms were also mapped with the assistance of Cape Nature 
and South African National Biodiversity Institute (SANBI). Also amongst the requested 2022/23 
deliverables were a methodology report (WCDoA, 2024a) and a strategic analysis of the data to 
inform the department and provincial planning partners (WCDoA, 2024b). 

Agricultural land use is one of the most requested datasets from the WCDoA’s Geographic 
Information System (GIS) Unit (Wallace, 2013). It was thus planned at the outset to make the census 
data available on an online GIS viewer application. The department developed an open user portal, 
known as CapeFarmMapper (Basson, 2013), whereby the census datasets described above could be 
viewed (Figure 7) and analysed in conjunction with various other spatial layers 
(https://gis.elsenburg.com/apps/cfm/). The platform has proved to be extremely popular and attracts 
thousands of users per month – many of whom are interacting with the agricultural commodity and 
infrastructure datasets (Wallace, 2021). 

https://gis.elsenburg.com/apps/cfm/
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Figure 7. A screenshot showing the level of detail in the census land use data. 

 

4. Conclusion 

The enormity of the various iterations in this census project is not to be underestimated. The 
number of crop fields/orchards/vineyards in the datasets approached 300 000, together with the many 
thousands of infrastructural points also captured, with their attributes. Since the 2013 census, various 
methodologies have been developed and refined over time to most effectively and efficiently capture 
the data required by WCDoA and its stakeholders. These range from attribute annotations based on 
skilled airborne and ground observations to intensive Web-based research, the analysis of Google 
Maps and Street View imagery, and, where absolutely necessary, telephonic queries. The process was 
also supported by local intelligence gathering and valued inputs following on many consultations 
with commodity groups and organised agriculture. The third iteration, providing satisfactory results, 
broke new ground in applying complex machine learning algorithms to classify a time series of 
satellite imagery gathered through the winter growing season.   

The considerable advantage of gathering such detailed census data in the spatial context is that it 
can provide regional statistics for any zone, or facilitate analysis at its most granular level for on-farm 
planning and operational interests. These data have provided not only industry stakeholders with 
valuable local information, but in the context of developing countries, new standards for government 
town and regional planners to integrate detailed and easily accessible land-use data into their strategic 
decision-making at all levels and across many disciplines. The repetition of the survey three times 
over a decade has also provided some unprecedented insights into the trajectories of change as 
producers innovatively adjust to market forces, climate variability, water availability and the ever-
increasing competition for land resources. 
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