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Abstract 

Observations (horizontal and vertical angles, azimuth, and zenith distances) made by 
surveyors and geodesists in their quest to solve spatial problems in the mapping of the Earth's 
surface are carried out with respect to the Earth's gravity field (geoid). The irregularity and 
non-homogeneity of the Earth's mass-density distribution have made the geoidal surface 
unsuitable for the computation and adjustment of spatial data. Hence, the ellipsoid has been 
adopted as an approximation of the geoid surface for mathematical computation. The non-
coincidence of the normal between these surfaces (the geoid and ellipsoid) underscores the 
criticality of the vertical deflection for reducing these observations to the ellipsoid. The need 
to provide a framework that will ensure the seamless transformation and conversion of the 
coordinates of varying reference surfaces (geoid and ellipsoid) and the reduction of 
astronomical quantities to the ellipsoid underscores the justification of this research. Hence, a 
hybrid model was developed to determine the vertical deflection component in Rivers State, 
Nigeria. This involved integrating geoid height differences from GPS/levelling with those from 
the global Earth Gravity Model (EGM 2008). Using the least squares method, the components 
of the deflection of the vertical for fifteen stations were calculated: they ranged from -0.0552″ 
to 0.0784″ in the north-south component and from -0.05940″ to 0.21530″ in the east-west 
component. The component of the deflection of the vertical computed using the various models 
gives values of ξ = 0.0473″, η = -0.0393″; ξ = 0.0404″, -0.0345″; ξ = 0.0157″, η = 0.0157″ for 
the geometric method, hybrid, and the EGM 2008 models, respectively. A map illustrating the 
deflection of the vertical for the study area was created, and a Graphical User Interface (GUI) 
was implemented to determine the deflection of the vertical at any location within the study 
area using the MATLAB Fourth Level Programming Language. 

(Keywords: deflection of the vertical, hybrid model, Kriging interpolation, EGM 2008, 
geoidal undulation) 
 
1. Introduction 

Vertical deflection is a critical geodetic component and a physical property of the Earth's 
gravity field (Torge, Muller, and Pail, 2023). It reflects the relationship between geometric and 
physical quantities in our quest to map the Earth’s surface. The deflection of the vertical, which 
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can be expressed in both meridian and prime vertical components, has previously been ignored 
in most geodetic computations (Featherstone, 1999). However, the integration of space-based 
geodetic positioning systems, such as the Global Navigational Satellite System (GNSS), with 
terrestrial-based positioning equipment, where orientation is defined by the Earth’s gravity 
field, necessitates this critical component (Ogaja, 2022). 

Space-based positioning systems are limited in areas where signal transmission is poor, such 
as in tunnels, indoor areas, or in areas with dense tree cover and high buildings (El-Rabbany, 
2002). One way to address the limitation of space-based positioning is to combine a GNSS 
receiver with terrestrial equipment, e.g., a Total Station. This requires vertical deflection 
components to convert the geometric (ellipsoidal) coordinate derived from the GNSS system 
to the astronomical coordinate of the Total Station. Furthermore, the calibration of inertia 
sensors used in navigation requires accurate knowledge of the vertical deflection component 
(Hao et al., 2020). The deflection of the vertical is the angle between the gravity vector and the 
normal to the ellipsoid (Hofmann-Wellenhof and Moritz, 2006). It is typically represented in 
the prime vertical and meridian components. The deflection of the vertical offers important 
geophysical information regarding the Earth’s underlying mass distribution as it reflects the 
variations in the Earth's mass density (Hofmann-Wellenhof and Moritz, 2006; Jonathan & 
Roger, 2012). 

Astronomical observations were the first method used to determine vertical deflection 
(Thompson, 1978). Gravity measurements, often applying the Vening-Meinesz formula, are 
another approach for computing gravimetric vertical deflections (Torge, 2001; Agajelu, 2018). 
Soler, Carlson, and Evans (1989) developed a geometric model for calculating vertical 
deflection by integrating GNSS data and precise leveling (orthometric height). However, this 
method is suitable in regions with adequate, evenly distributed geodetic networks and known 
ellipsoidal and orthometric heights. Furthermore, traditional leveling operations, which are 
foundational to the geometric method, are often labour-intensive and time-consuming (Soler, 
Carlson, & Evans, 1989; Vandenberg, 1999). Vertical deflections are obtained from high-
degree spherical harmonic models of the Earth’s gravity field (e.g., EGM08, EGM96). This 
method is biased by truncation errors in the order and degree of the spherical harmonic 
coefficients (Jekeli, 1999). Global geoid models, such as EGM 2008, serve as first-order 
approximations of the Earth's surface but often fail to capture the finer details of the local 
terrain characteristics, resulting in spatial mismatches (Hart & Basil, 2023). These 
discrepancies highlight the need for localized corrections or enhancements to achieve greater 
accuracy in geoid modeling within specific regions. 

In local geodetic networks, vertical deflections can be determined by combining GNSS 
observations with terrestrial measurements, such as zenith distances and horizontal and vertical 
angles (Vandenberg, 1999; Grafarend & Awange, 2000). However, as highlighted by 
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Vandenberg (1999), this method is marred by errors due to refraction in the measured zenith 
angles. Hirt, Burik, and Seeber (2010) used digital zenith cameras to determine vertical 
deflection components.  This method requires precisely calibrated cameras and is also subject 
to refraction errors in zenith distance measurements. Similarly, Li and Jekeli (2008) explored 
the integration of Global Positioning System (GPS) and Inertial Navigation System (INS) 
vector gravimetric measurements to determine the vertical deflection. Furthermore, Sabri, 
Bambang, and Rina (2019) used terrestrial gravity disturbances and the derivative function of 
hostine to calculate vertical deflection in Semarang City, India. 

Given the limitations of current models, this study proposes a new approach to determine 
the Earth's deflection of the vertical component using a hybrid model. The proposed hybrid 
model combines a geometric approach considered as highly accurate for estimating vertical 
deflection (Chiriac, 2017), with gravimetric techniques to offer a reliable result, especially in 
regions with limited geodetic control networks. The hybrid method capitalizes on widely 
available global geoid models and modifies them to fit local areas. Using orthometric height 
data from the local region, this approach calculates orthometric height differences between 
global and local domains to provide localized corrections. Surface interpolation algorithms 
then generate a correctional surface based on these corrections. The combination of this 
correctional surface with the global geoid model produces the so-called hybrid geoid model 
(Arana, Camargo, & Guimarães, 2017; Hart and Basil, 2023). Finally, integrating the hybrid 
geoidal undulation, which is the essentially the inverse of astro-geodetic height determination, 
gives the vertical deflection components (Merry & Vaníček, 1974).  

The proposed hybrid model is easy to implement. It addresses the limitations of an 
inadequate geodetic network by combining the existing data with a global geoid model. The 
study demonstrates the successful application of this hybrid model in Rivers State, Nigeria, in 
that it showcases its potential to address regional geodetic challenges.  

Section 2 provides an overview of the geometric and gravimetric methods used for 
calculating vertical deflection, which serve as the basis for the hybrid model.  Section 2.2.3 
presents a detailed description of the hybrid model and is followed by an explanation of the 
method of least squares estimation. The results of the study are presented in Section 3, and the 
conclusion is in Section 4. 

 

2. Methodology 

2.1. Study Area 

The study area encompasses eight local government areas in Rivers State, Nigeria. It 
constitutes the Greater Port Harcourt City (GPHC), covering an area of about 10,900 square 
kilometres. Located between latitudes 04° 15′N and 04° 25′N and longitudes 05° 20′E and 07° 
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15′E, the region lies just north of the equator and east of the Greenwich Meridian. This area 
comprises the local governments of Port Harcourt, Oyigbo, Okrika, Ogu-bolo, Obio-Akpor, 
Ikwerre, Etche, and Eleme, which are among the 23 local governments in Rivers State. This 
work used the geodetic network established during the GPHC survey by Alcon. GPHC is a 
long-term project initiated by the Rivers State government to tackle the challenges of 
infrastructure and social decay caused by population growth. Within this region, there are four 
prominent higher education institutions: the University of Port Harcourt, Rivers State 
University, Rivers State College of Arts and Science, and Ignatius Ajuru University of 
Education. Additionally, the area has developed infrastructure, including a national airport, an 
international airport, two seaports, a game village, two integrated cultural centres, three 
multipurpose stadiums, and several national and international oil and gas companies. (Oba, 
2015). 
 

 
Figure 1:  The study area (Source: Aleem, 2014). 
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2.2. Vertical Component Determination Methods 

2.2.1. The Geometric Model 

Soler, Carlson, and Evans (1989) proposed a geometric model to determine vertical 
deflection. The geometric model determines vertical deflection by differentiating the slope 
between the geoid and the ellipsoid. It assumes that the slope between the geoid and the 
ellipsoid is a linear function. This assumption is only true for a short baseline. For a long 
baseline, the slope between the geoid and the ellipsoid is no longer linear. As such, this model 
fails to account for such non-linearity. Hence, this model is suitable only in areas with dense 
geodetic networks and short baselines (Vandenberg, 1999; Basil et al., 2023). Knowing the 
slope between the ellipsoid and the geoid at the solution station allows for the calculation of 
the deflection of the vertical (ε ) as described in Figure 2. The mathematical models that relate 
these quantities to vertical deflection components are discussed below. 

 
Figure 2: Schematic diagram showing the relationship between geoidal undulation and the 

vertical deflection (Source: Hofmann-Wellenhof and Moritz, 2006). 
 

Figure 2 shows the relationship between the geoidal undulation (N) and the deflection of the 
vertical. ( )ε . The differential relationship between the geoid height (dN) and the deflection of 

the vertical (ε ) is defined as given in equation (1) (Hofmann-Wellenhof and Moritz, 2006; 
Fubara et al., 2012; Agajelu, 2018): 

 
dS
dN

−=ε          … eqn. (1) 

The deflection of the vertical of any geodetic azimuth (α ) direction can be calculated using 
equation (2)  

αηαξε sincos +=           …eqn. (2) 

Substituting equation (2) in equation (1) gives equation (3): 

αηαξ sin.cos. +=−
dS
dN       … eqn. (3) 

For a detailed derivation of the geometric model, the reader should consult Ayhan (2009) 
and Basil et al., (2023).  
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2.2.2. The Gravimetric Model  

The vertical deflection component can be determined from either the geopotential model of 
the Earth's gravity field (Jekeli, 1999), or the gravity disturbance using the hostine derivative 
function (Sabir et al., 2019), or from gravity anomalies (Chiriac, 2017). The gravimetric 
determination of the deflection of the vertical from gravity anomaly is based on the Veining 
Meinesz integral given by Merry and Vanicek (1974); Hofmann-Wellenhof and Moritz (2006); 
Torge & Muller and Pail (2023); and Agajelu (2018), as given in Equations (4) and (5); 

( ) ( ) αψψ
ψ
ψααψ

πγ
ξ

σ

dd
d

dsgR sincos,
4 ∫∫∆=      … eqn. (4) 

  ( ) ( ) αψψ
ψ
ψααψ

πγ
η

σ

dd
d

dsgR sinsin,
4 ∫∫∆=     … eqn. (5) 

Where: ξ is the deflection component along the meridian, η is the deflection component 
along the prime vertical, R is the Gaussian mean radius of the earth, γ is the mean gravity of 
the Earth, Δg represents, gravity anomalies ψ is the spherical distance from the computation 
point to the particular gravity anomaly, and α denotes the azimuth of the line connecting the 
computation point with the point at which g∆ is taken. 
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           … eqn. (6) 

( )
ψ
ψ

d
ds  is the Veining Meinesz function.      

The above equations (4) and (5) show how to calculate the vertical deflections from gravity 
anomalies. However, the calculation to determine the vertical deflection using the classical 
integral of the Veining Meinesz is tedious, time-consuming, and requires gravity data and large 
computer memory. Hence, for this study, the vertical deflection components were computed 
from EGM 2008 using Geoid Eval. The Earth Gravity Model (EGM) 2008 is complete to the 
spherical harmonics degree and order 2159 and contains additional coefficients extending to 
degree 2190 and order 2159 (Pelvis, Holmes, Kenyon & Cofactor, 2008).  

The geoidal undulation implied by EGM 2008 (NEGM 2008) can be obtained as given in 
equation (7); 

NEGM  = ( ) ( )ϑλλ
γ
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   … eqn. (7) 
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Where: GM is the product of the constant and mass of the earth, r is the geometric distance 
between the centre of the earth and the computation points, aref is a scaling parameter associated 
with a particular GGM (EGM 2008), Pnm(cosϑ) are fully normalized associated Legendre 
functions for degree n and order m, nmC  and nmS  are fully normalized spherical harmonic 

coefficients after reduction by the zonal harmonic of the reference ellipsoid, and nmax is the 
finite maximum degree of GGM (EGM 2008). 

Heiskanen and Moritz (1967), Rapp (1981), Torge et al. (2023), and Agajelu (2018) are 
relevant studies detailing the computation of geoid undulations from geopotential models.  

2.2.3. The Hybrid Model 

Combining the geometric model and the gravimetric model is known as hybridization, 
resulting in a hybrid model (Arana, Camargo, and Guimaraes, 2017). The input data for the 
generation of a hybrid model are a GPS/leveling geoid height (Ngeometric) and a gravimetric geoid 
grid (NEGM 2008). Hybridization is a process in three steps, as illustrated in Figure 3; first, the 
offsets of each GNSS/leveling point are computed using the EGM 2008 geoid model; second, 
a corrector surface is created; finally, this surface is fitted to the gravimetric geoid grid. The 
offsets calculated according to equation (8) are regarded as differences (ΔN)  between the 
geometric and the gravimetric geoid model. 

( ) ( )λϑλϑ ,, 2008EGMgeometric NNN −=∆       … eqn. (8) 

However, a regular grid surface must be generated to combine the differences obtained with 
the geoid height derived from the geopotential model. This combined surface would serve as 
the base from which any interpolation for any point (location) would be determined, as shown 
in equation (9): 

( ) ( )λϑλϑ ,,2008 NNN EGMHybrud ∆+=       … eqn. (9) 

The study calculated the deflection of the vertical component from the gradient of the 
developed hybrid geoid model, with the reference ellipsoid as a function of position according 
to equation (3). The refinement of the developed hybrid model is predicated on the generated 
correctional surface. The accuracy of this correctional surface is determined by the surface 
interpolation techniques used. For this reason, accurate surface representation is crucial for a 
precise hybrid geoid model. The researchers used two different surface representation 
techniques, including Inverse Distance Weighting (IDW) and Kriging, to generate the 
correctional surface and compare the results. As demonstrated by Basil and Hart (2023), the 
challenge with the IDW technique is the bull's-eye effect around the interpolation point, which 
introduces systematic bias in the correctional surface. Hence, we used the kriging interpolation 
technique in this study. 
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Figure 3: The process of integrating geometric and gravimetric methods  

 

2.3. Surface Interpolation using Kriging Techniques 

The Kriging technique is a set of statistical tools for modelling statistical relationships 
among measured points (using Kriging weights) to predict values and uncertainties for 
unmeasured locations. Kriging is a two-step process: first, the spatial covariance structure of 
the sampled points is determined by fitting a variogram; second, weights derived from this 
covariance structure are used to interpolate values for unsampled points or blocks across the 
spatial field. A variogram (sometimes called a semi-variogram) is a visual depiction of the 
covariance exhibited between each pair of points in the sampled data, which can be either a 
linear semi-variogram, a spherical semi-variogram, an exponential semi-variogram, or a power 
semi-variogram, the choice of which is fundamentally user-defined.  The kriging weight for 
each interpolated point is calculated from the variogram, is based on the spatial structure of the 
data, and is applied to the sampled points according to equation (10) (Deutsch and Journal, 
1992; Ogundere, 2018; Basil and Hart, 2023). 

 ( ) ( )∑
=

=
n

j
jji xzxz

1

ˆ λ        … eqn. (10) 
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  Where: 

)(ˆ ixz is the interpolated value,  

jλ is the kriging weight is determined from the semi-variogram. 

)( jxz is the value of known sample points within the spatial field. 

2.4. The Least Squares Method for Calculating Vertical Deflection  

This study estimated the vertical deflection component using the observation equation 
method of least squares. According to Uotila (1978), Ayeni (2011), and Ogundere (2019), the 
following mathematical models, as given in equations (11 – 16), hold for a linear case of the 
observation equation model of least squares adjustment: 

  ( ) bTT PLAPAAx 1ˆ −
=       … eqn. (11) 

  bLxAV += ˆ        … eqn. (12) 

=2
0σ �V

TPV
n−m

�       … eqn. (13) 

∑𝑋𝑋� = ℴ˚(𝐴𝐴𝑇𝑇𝑃𝑃𝑃𝑃)−1      … eqn. (14) 

VLL ba +=        … eqn. (15) 
Ta AxAL ∑∑ = ˆ       … eqn. (16) 

Where: x̂ is a vector of adjusted (unknown) parameters, V is the observation residual 
vector, bL is a vector of original observations, and A is the design matrix. n is the number of 
observations, m is the number of unknown parameters, and n-m is the degree of freedom.  

Equation (11) gives the unbiased least squares estimate, known as the Most Probable Value 
(MPV). Equation (12) gives the vector of residuals. Equation (13) gives the unit weight 
variance and tells us about the fitness of the adjustment model to the observation (Ayeni, 1981). 
It is known as the a-posterior variance. Equation (14) is the variance-covariance matrix, which 
is fundamentally important because the diagonal element yields the variance of the adjusted 
parameter, from which we can determine the standard deviation as a measure of the precision 
of the observation. We determined the adjusted observation from equation (15), with equation 
(16) representing the covariance matrix of the adjusted observation.  

The study developed Design Matrix (A) using the functional model between the observed 
parameters ( ShH ∆∆∆ ,,  andα ) and the unknown parameter (η  andξ ) as given in equation 

(3). 
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It developed the matrix of observation as shown below. 
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The weight matrix is inversely proportional to the square of the distance in kilometres 
between the test station and the auxiliary station. MATLAB software served to facilitate the 
calculation process. 

2.5. Data Acquisition 
 

Secondary data, as presented in Table 1, were obtained from the Greater Port Harcourt City 
Development Authority (GPHA). The dataset includes geometric coordinates of geodetic 
controls acquired using a static GPS observation campaign, and precise orthometric heights 
from levelling carried out by ALCON Surveys. These activities comprised part of the mapping 
of Rivers State, Nigeria, initiated by the State Government in 2009 (Oba, 2015). Given the 
limited availability of data covering the study area, we visualized the acquired data using 
ArcGIS software. The study area was systematically divided into regular grids, as shown in 
Figure 4. From each grid, the positions of selected stations were extracted for further analysis. 
These positions were used to compute the gravimetric geoidal undulation based on the EGM 
2008 model, as well as the geodetic distance and azimuth. 
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Figure 4: Gridding of the study area. 

 

The red points in Figure 4 represent the common points, and the green points represent those 
whose gravimetric undulations were to be determined, respectively.  

 

Table 1: Sample of the station coordinates of the geodetic network (GPHC, 2009) 

STN  
LAT. (ϑ) 
Decimal 
degree 

LONG(λ) 
Decimal 
degree 

East (m) North (m) Ellip. 
Height(m) 

M.S.L. 
Height(m) 

GPS001  5.0384 7.0027 278562.455 557256.887 47.654 29.513 

GPS 02  4.98834 7.00544 278846.155 551710.235 42.542 24.294 

GPS 03  4.97225 6.95118 272821.850 549949.018 38.771 20.630 

GPS 04  4.98817 6.95968 273770.193 551706.979 41.357 23.096 

GPS 05  4.97687 6.95053 272751.332 550460.253 39.485 21.289 

GPS 06  4.96842 6.95077 272775.056 549525.528 38.351 20.218 

GPS 07  4.95495 6.94708 272361.105 548036.898 34.627 16.476 

GPS 08  4.95378 6.94428 272050.092 547908.448 36.819 18.648 
GPS 09  4.97802 6.96892 274791.688 550581.147 38.155 20.165 

GPS 10  4.97662 6.97037 274952.056 550425.802 39.661 21.445 

GPS 11  4.97517 6.97196 275127.938 550264.880 40.589 22.342 

GPS 20  4.8751 6.95599 273322.503 539201.795 32.335 14.017 
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2.6. Computation of Geodetic Distance and Azimuth 

The determination of the geodetic curve distance and azimuth from the geodetic latitude and 
longitude defines the inverse problem of geometric geodesy (Fubara et al., 2014; Agajelu, 
2018). Various mathematical models, such as the Puissant formulae, Gauss Mid-latitude 
formulae, Kivioja formula, and Vincenty’s formula, have been developed for solving the direct 
and inverse problem of geometric geodesy (Thomson and Featherstone, 2005; Vincenty, 1975; 
Agajelu, 2018). The study employed Vincenty’s inverse formula, implemented in the 
Australian online Geoscience software as shown in Figure 5, to compute the geodetic azimuth 
and distance between the networks. The results of the calculation, including the difference in 
heights between the various points (location) determined using Microsoft Excel 2013, are 
presented in Table 4. 
  

 
Figure 5: Australian Geoscience Software used for calculating the geodetic azimuth and 

ellipsoidal distances. 
 

3. Results 

Table 2 shows the results of the gravimetric geoid calculation and the difference between 
the two geoidal undulations, i.e., the difference between the GPS/levelling-determined geoid 
(geometric geoid) and the gravimetric geoidal undulation (EGM 2008 geoid). These 
discrepancies illustrate the localization error inherent in the global geoid model, which we 
addressed by generating a correctional surface through the kriging interpolation techniques. 
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This surface was combined with the gravimetric geoid model to create the hybrid geoid model 
(Hart and Basil, 2023). 

 
Table 2: Differences between the geometric and the EGM-derived geoid height 

Stations LAT. (ϑ) LONG.(λ) Ellip. Orth. N=h-H EGM08 Diff. 

 
Decimal 
degree Decimal degree Height (m) Height (m) (m) (m) (m) 

GPS 48 4.915312 6.983789 35.254 16.965 18.289 18.914 -0.625 

GPS 49 4.807219 6.976287 29.336 10.995 18.341 18.975 -0.634 

GPS 50 4.80699 6.977222 29.173 10.798 18.375 18.976 -0.601 

GPS 51 4.781655 7.006075 28.033 9.558 18.475 19.018 -0.543 

GPS 52 4.782322 7.005458 27.536 9.062 18.474 19.017 -0.543 

GPS 53 4.783297 7.00524 27.441 8.824 18.617 19.016 -0.399 

GPS 54 4.916897 6.880103 20.494 2.33 18.164 18.791 -0.627 

GPS 55 4.916108 6.881155 20.982 2.819 18.163 18.792 -0.629 

GPS 56 4.913982 6.880881 20.672 2.488 18.184 18.794 -0.61 

      RMS 0.646636 
 

3.1. Validation of the Developed Hybrid Model  

As already established in geodetic literature, no interpolation method gives the exact 
representation of the modelled surface; however, the kriging interpolation method has the 
reputation of being a very precise and accurate interpolator (Ojigi, 2011; Basil and Hart, 2023). 
There is a need, therefore, to validate the developed hybrid geoid model to determine the degree 
of recoverability of the original value of the interpolated point (location). The validation 
involves determining the differences between a known point and an interpolated point 
(location). Five out of the 56 common points served to validate the developed hybrid model, 
and the result of the validation is presented in Table 3.  
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Table 3: Validation of the Hybrid Model. Here, Obs. is the difference between the geometric 
(ellipsoidal) height (h) from the GPS observation campaign, and the Orthometric height 

determined from the EGM 2008 model. The model values are those obtained from the hybrid 
geoid model generated using both kriging and IDW techniques. The differences (Diff.) 

between the Obs. values and the model values show the degree of recoverability and accuracy 
of the hybrid geoid model. 

SN LAT. (ϑ) Long. (λ) 
Obs.  
(N=h-H) 

Model Values (N) Diff. 

Kriging 
Techniques 

IDW 
Techniques Kriging. IDW 

1 4.9559 7.15583 18.385 18.4212 18.412 -0.036 -0.027 
2 4.8323 6.944122 18.273 18.2815 18.282 -0.009 -0.009 
3 4.8072 6.97628 18.341 18.3731 18.373 -0.032 -0.032 
4 4.8933 6.96628 18.314 18.2896 18.289 0.0244 0.025 
5 4.7880 7.15629 18.488 18.4482 18.444 0.0394 0.0436 
     RMS 0.0302 0.0295 

 
Table 4: Geodetic Distances, Azimuths, and Geoidal Heights. 

Solution 
Stations LAT. LONG. N 

Auxiliary 
Stations 

LAT. 
(ϑ) LONG.(λ) N 

Geodetic 
Dist. (S)  

Geodetic 
Azimuth 

GPS001 5.0384 7.0027 18.141 EGM 006 5.02659 7.15217 18.468 16626.58 94.49855 
        GPS 036 4.89088 7.07611 18.396 18231.92 153.4741 
        GPS004 4.98817 6.95968 18.261 7322.122 220.66083 

EGM 
005 5.02091 7.10648 18.4 EGM 001 5.01802 6.88276 18.125 24811.58 269.27177 

        GPS 041 4.83205 7.12673 18.505 21005.29 173.85994 
        GPS 050 4.80699 6.97722 18.375 27660.96 211.22318 

EGM 
008 4.96022 6.98963 18.278 EGM 001 5.01802 6.88276 18.125 13465.59 298.34235 

        GPS 002 4.98834 7.00544 18.248 3569.851 29.41633 
        GPS 027 4.83648 6.92827 18.269 15282.48 206.44676 

EGM 
009 4.961111 7.05541 18.349 EGM 018 4.83766 6.88402 18.256 23403.76 234.32409 

        GPS 045 4.76837 7.14278 18.512 23413.73 155.54439 
        EGM 004 5.02422 7.05017 18.269 7002.915 355.24024 

EGM 
010 4.95848 7.10319 18.423 GPS 016 4.93924 6.95796 18.215 16246.97 262.48154 

        GPS 051 4.78165 7.00607 18.475 22324.52 208.85424 
        EGM 001 5.01802 6.88276 18.125 25316.97 285.08356 

 

The vertical deflection component was calculated using the least squares techniques 
employing the method of observation equation.  MATLAB software was used to facilitate the 
calculation processes. The result of the computation is given in Table 5 
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Table 5: Vertical deflection components for fifteen stations within the study area  

STN 
LAT. 
(ϑ) 

LONG. 
(λ) 

North-South Comp. 
(ξ) 

East-West Comp. 
(η) 

Along the 
Normal (ε) 

GPS001 5.0385 7.0027 0.0404 ± 0.0000412″ -0.0345″ ± 0.00003519″ 0.077458″ 
EGM 005 5.0209 7.1065 0.0163″±0.00003505″ -0.0385″±0.00004709″ 0.041808″ 
EGM 008 4.9602 6.9896 0.0314″±0.00003454″ -0.0288″±0.00005080 0.042608″ 
EGM 009 4.9611 7.0554 0.0259″±0.00002634″ -0.0308″±0.00006793″ 0.040242″ 
EGM 010 4.9585 7.1032 0.0295″±0.00007031″ -0.0427″±0.00002789″ 0.051899″ 
EGM 012 4.8892 6.8825 0.0086″±0.00003250″ -0.0367″±0.00005110 0.037694″ 
EGM 013 4.8952 6.9386 -0.0552″±0.00003475″ 0.0069″±0.00004182″ 0.05563″ 
EGM 014 4.8905 6.9974 0.0760″±0.00004253″ -0.2153″±0.00007022 0.22832″ 
SVG GPS 002 4.8001 6.9800 0.0416″±0.00007022″ 0.009″±0.00005755″ 0.042562″ 
EGM 019 4.8368 6.9990 -0.0286″±0.00002913″ -0.0423″±0.00003345″ 0.051061″ 
EGM 020 4.8370 7.0530 0.0249″±0.00004389″ -0.0594″±0.0002433″ 0.064408″ 
EGM 022 4.8414 7.1555 -0.0206″±0.00008639″ -0.0085″±0.00005584″ 0.022285″ 
GPS053 4.7833 7.0052 0.0711″±0.0000002997″ -0.0351″±0.0002725″ 0.079292″ 
EGM 027 4.7816 7.1009 0.0181″±0.0003487″ -0.0469″±0.0009024″ 0.050271″ 
EGM 028 4.7880 7.1563 0.0748″±0.0005223″ 0.0270″±0.0003370″ 0.079524″ 

 

The a-posterior variance is given as: 

30.000005692 ′′=







−

=
mn

PVV T

σ  

The a-posterior standard error is given as: 

30.000045 ′′±=







−

=
mn

PVV T

σ  

3.2. Comparison between the Geometric, Hybrid, and the EGM 2008 derived vertical 
deflection components 

To evaluate the accuracy of the hybrid model, vertical deflection components were also 
determined using the geometric method and the EGM 2008 geopotential model for a single 
point (location) within the study area. The results are presented in Table 6 and Figure 6. 

Table 6: Comparison of the vertical deflection components values obtained from geometric 
method, hybrid method, and geopotential model (EGM 2008). 

Comparison of the deflection of the vertical 

Methods 
North-South 
Component (ξ) 

East-West 
Component (η) difference 

Geometric Method 0.0473″ -0.0393″  ξ η  

Hybrid Model  0.0404″ -0.0345″ 0.0069 -0.0048″ 

EGM 2008  0.0157″ -0.0246″ 0.0316 -0.0147″ 
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Figure 6: Comparison of the vertical deflection components as determined by the geometric 
method, hybrid model, and EGM between the components of the deflection of the vertical 

derived using the geometric method, the hybrid method, and the gravimetric method. 
 

The vertical deflection map for the study is presented in Figure 6. Surfer 13 software, based 
on the kriging gridding techniques, was used for this purpose.  

 
Figure 7: Map showing the total vertical deflection of the vertical values within the study 

area. 
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3.3. Discussion of Results 

Table 1 presents a comparison between the geometric geoid undulation and the gravimetric 
geoid undulation as calculated from the geopotential model (EGM 2008), with a root mean 
square of 0.6466. Using the hybridization, the study found that the root mean deviation between 
the hybrid model and the geometric model was 0.0302 for kriging and 0.0295 for IDW. This 
shows the degree of fitness of the developed hybrid model compared to the geometric model. 
Irrespective of the fact that IDW gives a smaller RMS, it generates concentric circles around 
the interpolation point, usually referred to as the bull's-eye effect (Hart and Basil, 2023; 
Ogiji,2011). The kriging technique gives a minimum variance estimate by minimizing the sum 
of the weighted residuals; that is, it gives an unbiased estimate of the interpolated point and is 
more reliable than the IDW interpolation technique. 

The vertical deflection component estimated using the hybrid model as described in this 
research is within the range of -0.0552″ to 0.0784″ in the north-south component and -0.05940″ 
to 0.21530″ in the east-west component. This is shown in Table 3, with a posterior standard 
error of 30.000045 ′′± . The small variations in the vertical deflection component with respect 
to position reflect the internal distribution of the Earth's mass density, which portrays the 
relative flatness of the terrain characteristic.  

As seen in Table 5, the vertical deflection components obtained from the developed hybrid 
model fit reasonably well with those obtained using the geometric method, as opposed to the 
gravimetric deflection of the vertical computed from the geopotential model (EGM 2008): 
there was a difference of 0.0069″ and -0.0048″ in the north-south and east-west components, 
respectively. Hence, the hybrid model can be considered the best alternative to the geometric 
method for determining vertical deflection components in areas served by poor geodetic 
infrastructure and unevenly spaced geodetic networks. The difference between the 
geometrically derived vertical deflection component and that derived from the geopotential 
model (EGM 2008) shows the fitness of the EGM 2008 model with respect to the local gravity 
field of the study area. This further demonstrates the use of vertical deflection in assessing the 
fitness of a particular geoid model. 

 

4. Conclusion 

This research highlights the effectiveness of the hybrid model for computing the vertical 
deflection component in Rivers State, Nigeria. The proposed approach integrates both 
geometric and gravimetric methods through the application of a surface interpolation 
algorithm. The findings demonstrate that the hybrid model aligns well with the geometric 
method, making it a viable solution for regions with sparsely distributed geodetic networks. 
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The accuracy of the hybrid vertical deflection component is strongly influenced by the surface 
interpolation algorithm and the density of the common sample points used. Thus, increasing 
the number of common points would improve the accuracy of the vertical deflection 
components. 

To further improve the reliability and applicability of the hybrid model, it is recommended 
to expand the network of geodetic sample points across the study area and other similar regions. 
Additionally, exploring advanced interpolation techniques and integrating high-resolution 
global gravity models could further refine the accuracy of the vertical deflection component. 
Future studies should also consider testing the model's performance in diverse geodetic and 
topographic conditions to establish its broader applicability. 
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